Cog/Frameworks/libsidplay/sidplay-residfp-code/.svn/pristine/9d/9d58a6e2f47e400269173e9feb897501765747af.svn-base

337 lines
9.9 KiB
Text
Raw Normal View History

2014-12-08 03:26:31 -03:00
// ---------------------------------------------------------------------------
// This file is part of reSID, a MOS6581 SID emulator engine.
// Copyright (C) 2010 Dag Lem <resid@nimrod.no>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// ---------------------------------------------------------------------------
#ifndef RESID_ENVELOPE_H
#define RESID_ENVELOPE_H
#include "resid-config.h"
namespace reSID
{
// ----------------------------------------------------------------------------
// A 15 bit counter is used to implement the envelope rates, in effect
// dividing the clock to the envelope counter by the currently selected rate
// period.
// In addition, another counter is used to implement the exponential envelope
// decay, in effect further dividing the clock to the envelope counter.
// The period of this counter is set to 1, 2, 4, 8, 16, 30 at the envelope
// counter values 255, 93, 54, 26, 14, 6, respectively.
// ----------------------------------------------------------------------------
class EnvelopeGenerator
{
public:
EnvelopeGenerator();
enum State { ATTACK, DECAY_SUSTAIN, RELEASE };
void set_chip_model(chip_model model);
void clock();
void clock(cycle_count delta_t);
void reset();
void writeCONTROL_REG(reg8);
void writeATTACK_DECAY(reg8);
void writeSUSTAIN_RELEASE(reg8);
reg8 readENV();
// 8-bit envelope output.
short output();
protected:
void set_exponential_counter();
reg16 rate_counter;
reg16 rate_period;
reg8 exponential_counter;
reg8 exponential_counter_period;
reg8 envelope_counter;
// Emulation of pipeline delay for envelope decrement.
cycle_count envelope_pipeline;
bool hold_zero;
reg4 attack;
reg4 decay;
reg4 sustain;
reg4 release;
reg8 gate;
State state;
chip_model sid_model;
// Lookup table to convert from attack, decay, or release value to rate
// counter period.
static reg16 rate_counter_period[];
// The 16 selectable sustain levels.
static reg8 sustain_level[];
// DAC lookup tables.
static unsigned short model_dac[2][1 << 8];
friend class SID;
};
// ----------------------------------------------------------------------------
// Inline functions.
// The following functions are defined inline because they are called every
// time a sample is calculated.
// ----------------------------------------------------------------------------
#if RESID_INLINING || defined(RESID_ENVELOPE_CC)
// ----------------------------------------------------------------------------
// SID clocking - 1 cycle.
// ----------------------------------------------------------------------------
RESID_INLINE
void EnvelopeGenerator::clock()
{
// If the exponential counter period != 1, the envelope decrement is delayed
// 1 cycle. This is only modeled for single cycle clocking.
if (unlikely(envelope_pipeline)) {
--envelope_counter;
envelope_pipeline = 0;
// Check for change of exponential counter period.
set_exponential_counter();
}
// Check for ADSR delay bug.
// If the rate counter comparison value is set below the current value of the
// rate counter, the counter will continue counting up until it wraps around
// to zero at 2^15 = 0x8000, and then count rate_period - 1 before the
// envelope can finally be stepped.
// This has been verified by sampling ENV3.
//
if (unlikely(++rate_counter & 0x8000)) {
++rate_counter &= 0x7fff;
}
if (likely(rate_counter != rate_period)) {
return;
}
rate_counter = 0;
// The first envelope step in the attack state also resets the exponential
// counter. This has been verified by sampling ENV3.
//
if (state == ATTACK || ++exponential_counter == exponential_counter_period)
{
// likely (~50%)
exponential_counter = 0;
// Check whether the envelope counter is frozen at zero.
if (unlikely(hold_zero)) {
return;
}
switch (state) {
case ATTACK:
// The envelope counter can flip from 0xff to 0x00 by changing state to
// release, then to attack. The envelope counter is then frozen at
// zero; to unlock this situation the state must be changed to release,
// then to attack. This has been verified by sampling ENV3.
//
++envelope_counter &= 0xff;
if (unlikely(envelope_counter == 0xff)) {
state = DECAY_SUSTAIN;
rate_period = rate_counter_period[decay];
}
break;
case DECAY_SUSTAIN:
if (likely(envelope_counter == sustain_level[sustain])) {
return;
}
if (exponential_counter_period != 1) {
// unlikely (15%)
// The decrement is delayed one cycle.
envelope_pipeline = 1;
return;
}
--envelope_counter;
break;
case RELEASE:
// The envelope counter can flip from 0x00 to 0xff by changing state to
// attack, then to release. The envelope counter will then continue
// counting down in the release state.
// This has been verified by sampling ENV3.
// NB! The operation below requires two's complement integer.
//
if (exponential_counter_period != 1) {
// likely (~50%)
// The decrement is delayed one cycle.
envelope_pipeline = 1;
return;
}
--envelope_counter &= 0xff;
break;
}
// Check for change of exponential counter period.
set_exponential_counter();
}
}
// ----------------------------------------------------------------------------
// SID clocking - delta_t cycles.
// ----------------------------------------------------------------------------
RESID_INLINE
void EnvelopeGenerator::clock(cycle_count delta_t)
{
// NB! Any pipelined envelope counter decrement from single cycle clocking
// will be lost. It is not worth the trouble to flush the pipeline here.
// Check for ADSR delay bug.
// If the rate counter comparison value is set below the current value of the
// rate counter, the counter will continue counting up until it wraps around
// to zero at 2^15 = 0x8000, and then count rate_period - 1 before the
// envelope can finally be stepped.
// This has been verified by sampling ENV3.
//
// NB! This requires two's complement integer.
int rate_step = rate_period - rate_counter;
if (unlikely(rate_step <= 0)) {
rate_step += 0x7fff;
}
while (delta_t) {
if (delta_t < rate_step) {
// likely (~65%)
rate_counter += delta_t;
if (unlikely(rate_counter & 0x8000)) {
++rate_counter &= 0x7fff;
}
return;
}
rate_counter = 0;
delta_t -= rate_step;
// The first envelope step in the attack state also resets the exponential
// counter. This has been verified by sampling ENV3.
//
if (state == ATTACK || ++exponential_counter == exponential_counter_period)
{
// likely (~50%)
exponential_counter = 0;
// Check whether the envelope counter is frozen at zero.
if (unlikely(hold_zero)) {
rate_step = rate_period;
continue;
}
switch (state) {
case ATTACK:
// The envelope counter can flip from 0xff to 0x00 by changing state to
// release, then to attack. The envelope counter is then frozen at
// zero; to unlock this situation the state must be changed to release,
// then to attack. This has been verified by sampling ENV3.
//
++envelope_counter &= 0xff;
if (unlikely(envelope_counter == 0xff)) {
state = DECAY_SUSTAIN;
rate_period = rate_counter_period[decay];
}
break;
case DECAY_SUSTAIN:
if (likely(envelope_counter == sustain_level[sustain])) {
return;
}
--envelope_counter;
break;
case RELEASE:
// The envelope counter can flip from 0x00 to 0xff by changing state to
// attack, then to release. The envelope counter will then continue
// counting down in the release state.
// This has been verified by sampling ENV3.
// NB! The operation below requires two's complement integer.
//
--envelope_counter &= 0xff;
break;
}
// Check for change of exponential counter period.
set_exponential_counter();
}
rate_step = rate_period;
}
}
// ----------------------------------------------------------------------------
// Read the envelope generator output.
// ----------------------------------------------------------------------------
RESID_INLINE
short EnvelopeGenerator::output()
{
// DAC imperfections are emulated by using envelope_counter as an index
// into a DAC lookup table. readENV() uses envelope_counter directly.
return model_dac[sid_model][envelope_counter];
}
RESID_INLINE
void EnvelopeGenerator::set_exponential_counter()
{
// Check for change of exponential counter period.
switch (envelope_counter) {
case 0xff:
exponential_counter_period = 1;
break;
case 0x5d:
exponential_counter_period = 2;
break;
case 0x36:
exponential_counter_period = 4;
break;
case 0x1a:
exponential_counter_period = 8;
break;
case 0x0e:
exponential_counter_period = 16;
break;
case 0x06:
exponential_counter_period = 30;
break;
case 0x00:
// FIXME: Check whether 0x00 really changes the period.
// E.g. set R = 0xf, gate on to 0x06, gate off to 0x00, gate on to 0x04,
// gate off, sample.
exponential_counter_period = 1;
// When the envelope counter is changed to zero, it is frozen at zero.
// This has been verified by sampling ENV3.
hold_zero = true;
break;
}
}
#endif // RESID_INLINING || defined(RESID_ENVELOPE_CC)
} // namespace reSID
#endif // not RESID_ENVELOPE_H