#include "resampler.h" #include #include #include /* Copyright (C) 2004-2008 Shay Green. Copyright (C) 2015-2022 Christopher Snowhill. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #undef PI #define PI 3.1415926535897932384626433832795029 enum { imp_scale = 0x7FFF }; typedef int16_t imp_t; typedef int32_t imp_off_t; /* for max_res of 512 and impulse width of 32, end offsets must be 32 bits */ #if RESAMPLER_BITS == 16 typedef int32_t intermediate_t; #elif RESAMPLER_BITS == 32 typedef int64_t intermediate_t; #endif static void gen_sinc(double rolloff, int width, double offset, double spacing, double scale, int count, imp_t *out) { double const maxh = 256; double const step = PI / maxh * spacing; double const to_w = maxh * 2 / width; double const pow_a_n = pow(rolloff, maxh); double angle = (count / 2 - 1 + offset) * -step; scale /= maxh * 2; while(count--) { double w; *out++ = 0; w = angle * to_w; if(fabs(w) < PI) { double rolloff_cos_a = rolloff * cos(angle); double num = 1 - rolloff_cos_a - pow_a_n * cos(maxh * angle) + pow_a_n * rolloff * cos((maxh - 1) * angle); double den = 1 - rolloff_cos_a - rolloff_cos_a + rolloff * rolloff; double sinc = scale * num / den - scale; out[-1] = (imp_t)(cos(w) * sinc + sinc); } angle += step; } } enum { width = 64 }; enum { stereo = 2 }; enum { max_res = 512 }; enum { min_width = (width < 4 ? 4 : width) }; enum { adj_width = min_width / 4 * 4 + 2 }; enum { write_offset = adj_width * stereo }; enum { buffer_size = 128 }; typedef struct _resampler { int width_; int rate_; int inptr; int infilled; int outptr; int outfilled; int latency; imp_t const *imp; imp_t impulses[max_res * (adj_width + 2 * (sizeof(imp_off_t) / sizeof(imp_t)))]; sample_t buffer_in[buffer_size * stereo * 2]; sample_t buffer_out[buffer_size * stereo]; } resampler; void *resampler_create() { resampler *r = (resampler *)malloc(sizeof(resampler)); if(r) resampler_clear(r); return r; } void *resampler_dup(void *_r) { resampler *r = (resampler *)_r; resampler *t = (resampler *)malloc(sizeof(resampler)); if(r && t) { memcpy(t, r, sizeof(resampler)); t->imp = t->impulses + (r->imp - r->impulses); } else if(t) { resampler_clear(t); } return t; } void resampler_destroy(void *r) { free(r); } void resampler_clear(void *_r) { resampler *r = (resampler *)_r; r->width_ = adj_width; r->inptr = 0; r->infilled = 0; r->outptr = 0; r->outfilled = 0; r->latency = 0; r->imp = r->impulses; resampler_set_rate(r, 1.0); } void resampler_set_rate(void *_r, double new_factor) { resampler *rs = (resampler *)_r; double const rolloff = 0.999; double const gain = 1.0; int step; double fraction; double filter; double pos = 0.0; imp_t *out; int n; /* determine number of sub-phases that yield lowest error */ double ratio_ = 0.0; int res = -1; { double least_error = 2; double pos = 0; int r; for(r = 1; r <= max_res; r++) { double nearest, error; pos += new_factor; nearest = floor(pos + 0.5); error = fabs(pos - nearest); if(error < least_error) { res = r; ratio_ = nearest / res; least_error = error; } } } rs->rate_ = ratio_; /* how much of input is used for each output sample */ step = stereo * (int)floor(ratio_); fraction = fmod(ratio_, 1.0); filter = (ratio_ < 1.0) ? 1.0 : 1.0 / ratio_; /*int input_per_cycle = 0;*/ out = rs->impulses; for(n = res; --n >= 0;) { int cur_step; gen_sinc(rolloff, (int)(rs->width_ * filter + 1) & ~1, pos, filter, (double)(imp_scale * gain * filter), (int)rs->width_, out); out += rs->width_; cur_step = step; pos += fraction; if(pos >= 0.9999999) { pos -= 1.0; cur_step += stereo; } ((imp_off_t *)out)[0] = (cur_step - rs->width_ * 2 + 4) * sizeof(sample_t); ((imp_off_t *)out)[1] = 2 * sizeof(imp_t) + 2 * sizeof(imp_off_t); out += 2 * (sizeof(imp_off_t) / sizeof(imp_t)); /*input_per_cycle += cur_step;*/ } /* last offset moves back to beginning of impulses*/ ((imp_off_t *)out)[-1] -= (char *)out - (char *)rs->impulses; rs->imp = rs->impulses; } int resampler_get_free(void *_r) { resampler *r = (resampler *)_r; return buffer_size * stereo - r->infilled; } int resampler_get_min_fill(void *_r) { resampler *r = (resampler *)_r; const int min_needed = write_offset + stereo; const int latency = r->latency ? 0 : adj_width; int min_free = min_needed - r->infilled - latency; return min_free < 0 ? 0 : min_free; } void resampler_write_pair(void *_r, sample_t ls, sample_t rs) { resampler *r = (resampler *)_r; if(!r->latency) { int i; for(i = 0; i < adj_width / 2; ++i) { r->buffer_in[r->inptr + 0] = 0; r->buffer_in[r->inptr + 1] = 0; r->buffer_in[buffer_size * stereo + r->inptr + 0] = 0; r->buffer_in[buffer_size * stereo + r->inptr + 1] = 0; r->inptr = (r->inptr + stereo) % (buffer_size * stereo); r->infilled += stereo; } r->latency = 1; } if(r->infilled < buffer_size * stereo) { r->buffer_in[r->inptr + 0] = ls; r->buffer_in[r->inptr + 1] = rs; r->buffer_in[buffer_size * stereo + r->inptr + 0] = ls; r->buffer_in[buffer_size * stereo + r->inptr + 1] = rs; r->inptr = (r->inptr + stereo) % (buffer_size * stereo); r->infilled += stereo; } } #ifdef _MSC_VER #define restrict __restrict #endif static const sample_t *resampler_inner_loop(resampler *r, sample_t **out_, sample_t const *out_end, sample_t const in[], int in_size) { in_size -= write_offset; if(in_size > 0) { sample_t *restrict out = *out_; sample_t const *const in_end = in + in_size; imp_t const *imp = r->imp; do { /* accumulate in extended precision*/ int pt = imp[0]; int n; intermediate_t l = (intermediate_t)pt * (intermediate_t)(in[0]); intermediate_t r = (intermediate_t)pt * (intermediate_t)(in[1]); if(out >= out_end) break; for(n = (adj_width - 2) / 2; n; --n) { pt = imp[1]; l += (intermediate_t)pt * (intermediate_t)(in[2]); r += (intermediate_t)pt * (intermediate_t)(in[3]); /* pre-increment more efficient on some RISC processors*/ imp += 2; pt = imp[0]; r += (intermediate_t)pt * (intermediate_t)(in[5]); in += 4; l += (intermediate_t)pt * (intermediate_t)(in[0]); } pt = imp[1]; l += (intermediate_t)pt * (intermediate_t)(in[2]); r += (intermediate_t)pt * (intermediate_t)(in[3]); /* these two "samples" after the end of the impulse give the * proper offsets to the next input sample and next impulse */ in = (sample_t const *)((char const *)in + ((imp_off_t *)(&imp[2]))[0]); /* some negative value */ imp = (imp_t const *)((char const *)imp + ((imp_off_t *)(&imp[2]))[1]); /* small positive or large negative */ out[0] = (sample_t)(l >> 15); out[1] = (sample_t)(r >> 15); out += 2; } while(in < in_end); r->imp = imp; *out_ = out; } return in; } #undef restrict static int resampler_wrapper(resampler *r, sample_t out[], int *out_size, sample_t const in[], int in_size) { sample_t *out_ = out; int result = resampler_inner_loop(r, &out_, out + *out_size, in, in_size) - in; *out_size = out_ - out; return result; } static void resampler_fill(resampler *r) { while(!r->outfilled && r->infilled) { int writepos = (r->outptr + r->outfilled) % (buffer_size * stereo); int writesize = (buffer_size * stereo) - writepos; int inread; if(writesize > (buffer_size * stereo - r->outfilled)) writesize = buffer_size * stereo - r->outfilled; inread = resampler_wrapper(r, &r->buffer_out[writepos], &writesize, &r->buffer_in[buffer_size * stereo + r->inptr - r->infilled], r->infilled); r->infilled -= inread; r->outfilled += writesize; if(!inread) break; } } int resampler_get_avail(void *_r) { resampler *r = (resampler *)_r; if(r->outfilled < stereo && r->infilled >= r->width_) resampler_fill(r); return r->outfilled; } static void resampler_read_pair_internal(resampler *r, sample_t *ls, sample_t *rs, int advance) { if(r->outfilled < stereo) resampler_fill(r); if(r->outfilled < stereo) { *ls = 0; *rs = 0; return; } *ls = r->buffer_out[r->outptr + 0]; *rs = r->buffer_out[r->outptr + 1]; if(advance) { r->outptr = (r->outptr + 2) % (buffer_size * stereo); r->outfilled -= stereo; } } void resampler_read_pair(void *_r, sample_t *ls, sample_t *rs) { resampler *r = (resampler *)_r; resampler_read_pair_internal(r, ls, rs, 1); } void resampler_peek_pair(void *_r, sample_t *ls, sample_t *rs) { resampler *r = (resampler *)_r; resampler_read_pair_internal(r, ls, rs, 0); }