#include #include #define _USE_MATH_DEFINES #include #ifndef M_PI #define M_PI 3.141592653589793 #endif enum { half_width = 8 }; enum { phase_bits = 5 }; enum { phase_count = 1 << phase_bits }; enum { sinc_samples = phase_count * half_width }; static float sinc_lut[sinc_samples + 1]; static float window_lut[sinc_samples + 1]; static int bl_step[phase_count + 1] [half_width]; static int fEqual(const float b, const float a) { return fabs(a - b) < 1.0e-6; } static float sinc(float x) { return fEqual(x, 0.0) ? 1.0 : sin(x * M_PI) / (x * M_PI); } int main(void) { unsigned i; int k; double dx = (float)(half_width) / sinc_samples, x = 0.0; for (i = 0; i < sinc_samples + 1; ++i, x += dx) { float y = x / half_width; #if 0 // Blackman float window = 0.42659 - 0.49656 * cos(M_PI + M_PI * y) + 0.076849 * cos(2.0 * M_PI * y); #elif 1 // Nuttal 3 term float window = 0.40897 + 0.5 * cos(M_PI * y) + 0.09103 * cos(2.0 * M_PI * y); #elif 0 // C.R.Helmrich's 2 term window float window = 0.79445 * cos(0.5 * M_PI * y) + 0.20555 * cos(1.5 * M_PI * y); #elif 0 // Lanczos float window = sinc(y); #endif sinc_lut[i] = fabs(x) < half_width ? sinc(x) : 0.0; window_lut[i] = window; } for (i = 0; i <= phase_count / 2; ++i) { float kernel_sum = 0; float kernel[half_width * 2]; for (k = half_width; k >= -half_width + 1; --k) { int pos = k * phase_count; int abs_pos = abs(i - pos); kernel_sum += kernel[k + half_width - 1] = sinc_lut[abs_pos] * window_lut[abs_pos]; } kernel_sum = (1.0 / kernel_sum) * 32768.0; for (k = 0; k < half_width; ++k) bl_step[i][k] = (int)(kernel[k] * kernel_sum); for (k = 0; k < half_width; ++k) bl_step[phase_count - i][half_width - k - 1] = (int)(kernel[half_width + k] * kernel_sum); } printf( "static int const bl_step [phase_count + 1] [half_width] =\n{\n" ); for (i = 0; i <= phase_count; ++i) { printf("{"); for (k = 0; k < half_width; ++k) { printf("%5d", bl_step[i][k]); if (k < half_width - 1) printf(","); } printf("}"); if (i < phase_count) printf(","); printf("\n"); } printf( "};\n" ); return 0; }