1975 lines
57 KiB
C
1975 lines
57 KiB
C
/*
|
|
* Copyright (C) 2002-2009 The DOSBox Team
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator.
|
|
Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2
|
|
Except for the table generation it's all integer math
|
|
Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms
|
|
The generation was based on the MAME implementation but tried to have it use less memory and be faster in general
|
|
MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times
|
|
|
|
//TODO Don't delay first operator 1 sample in opl3 mode
|
|
//TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter
|
|
//TODO Fix panning for the Percussion channels, would any opl3 player use it and actually really change it though?
|
|
//TODO Check if having the same accuracy in all frequency multipliers sounds better or not
|
|
|
|
//DUNNO Keyon in 4op, switch to 2op without keyoff.
|
|
*/
|
|
|
|
/* $Id$ */
|
|
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "dbopl.h"
|
|
|
|
//Use 8 handlers based on a small logatirmic wavetabe and an exponential table for volume
|
|
#define WAVE_HANDLER 10
|
|
//Use a logarithmic wavetable with an exponential table for volume
|
|
#define WAVE_TABLELOG 11
|
|
//Use a linear wavetable with a multiply table for volume
|
|
#define WAVE_TABLEMUL 12
|
|
|
|
//Select the type of wave generator routine
|
|
#define DBOPL_WAVE WAVE_TABLEMUL
|
|
|
|
#if (DBOPL_WAVE == WAVE_HANDLER)
|
|
typedef Bits ( DB_FASTCALL *WaveHandler) ( Bitu i, Bitu volume );
|
|
#endif
|
|
|
|
typedef struct Operator Operator;
|
|
typedef struct Channel Channel;
|
|
typedef struct Chip Chip;
|
|
|
|
typedef Bits ( *Operator_VolumeHandler) ( struct Operator * );
|
|
typedef struct Channel* ( *Channel_SynthHandler) ( struct Channel *, struct Chip* chip, Bit32u samples, Bit32s* output );
|
|
|
|
//Different synth modes that can generate blocks of data
|
|
typedef enum {
|
|
sm2AM,
|
|
sm2FM,
|
|
sm3AM,
|
|
sm3FM,
|
|
sm4Start,
|
|
sm3FMFM,
|
|
sm3AMFM,
|
|
sm3FMAM,
|
|
sm3AMAM,
|
|
sm6Start,
|
|
sm2Percussion,
|
|
sm3Percussion
|
|
} SynthMode;
|
|
|
|
//Shifts for the values contained in chandata variable
|
|
enum {
|
|
SHIFT_KSLBASE = 16,
|
|
SHIFT_KEYCODE = 24
|
|
};
|
|
|
|
enum {
|
|
MASK_KSR = 0x10,
|
|
MASK_SUSTAIN = 0x20,
|
|
MASK_VIBRATO = 0x40,
|
|
MASK_TREMOLO = 0x80
|
|
};
|
|
|
|
typedef enum {
|
|
OFF,
|
|
RELEASE,
|
|
SUSTAIN,
|
|
DECAY,
|
|
ATTACK
|
|
} Operator_State;
|
|
|
|
struct Operator {
|
|
//Masks for operator 20 values
|
|
Operator_VolumeHandler volHandler;
|
|
|
|
#if (DBOPL_WAVE == WAVE_HANDLER)
|
|
WaveHandler waveHandler; //Routine that generate a wave
|
|
#else
|
|
Bit16s* waveBase;
|
|
Bit32u waveMask;
|
|
Bit32u waveStart;
|
|
#endif
|
|
Bit32u waveIndex; //WAVE_BITS shifted counter of the frequency index
|
|
Bit32u waveAdd; //The base frequency without vibrato
|
|
Bit32u waveCurrent; //waveAdd + vibratao
|
|
|
|
Bit32u chanData; //Frequency/octave and derived data coming from whatever channel controls this
|
|
Bit32u freqMul; //Scale channel frequency with this, TODO maybe remove?
|
|
Bit32u vibrato; //Scaled up vibrato strength
|
|
Bit32s sustainLevel; //When stopping at sustain level stop here
|
|
Bit32s totalLevel; //totalLevel is added to every generated volume
|
|
Bit32u currentLevel; //totalLevel + tremolo
|
|
Bit32s volume; //The currently active volume
|
|
|
|
Bit32u attackAdd; //Timers for the different states of the envelope
|
|
Bit32u decayAdd;
|
|
Bit32u releaseAdd;
|
|
Bit32u rateIndex; //Current position of the evenlope
|
|
|
|
Bit8u rateZero; //Bits for the different states of the envelope having no changes
|
|
Bit8u keyOn; //Bitmask of different values that can generate keyon
|
|
//Registers, also used to check for changes
|
|
Bit8u reg20, reg40, reg60, reg80, regE0;
|
|
//Active part of the envelope we're in
|
|
Bit8u state;
|
|
//0xff when tremolo is enabled
|
|
Bit8u tremoloMask;
|
|
//Strength of the vibrato
|
|
Bit8u vibStrength;
|
|
//Keep track of the calculated KSR so we can check for changes
|
|
Bit8u ksr;
|
|
};
|
|
|
|
struct Channel {
|
|
struct Operator op[2];
|
|
Channel_SynthHandler synthHandler;
|
|
Bit32u chanData; //Frequency/octave and derived values
|
|
Bit32s old[2]; //Old data for feedback
|
|
|
|
Bit8u feedback; //Feedback shift
|
|
Bit8u regB0; //Register values to check for changes
|
|
Bit8u regC0;
|
|
//This should correspond with reg104, bit 6 indicates a Percussion channel, bit 7 indicates a silent channel
|
|
Bit8u fourMask;
|
|
Bit8s maskLeft; //Sign extended values for both channel's panning
|
|
Bit8s maskRight;
|
|
Bit8s mask;
|
|
Bit8u chanActive;
|
|
};
|
|
|
|
struct Chip {
|
|
//This is used as the base counter for vibrato and tremolo
|
|
Bit32u lfoCounter;
|
|
Bit32u lfoAdd;
|
|
|
|
|
|
Bit32u noiseCounter;
|
|
Bit32u noiseAdd;
|
|
Bit32u noiseValue;
|
|
|
|
//Frequency scales for the different multiplications
|
|
Bit32u freqMul[16];
|
|
//Rates for decay and release for rate of this chip
|
|
Bit32u linearRates[76];
|
|
//Best match attack rates for the rate of this chip
|
|
Bit32u attackRates[76];
|
|
|
|
//18 channels with 2 operators each
|
|
struct Channel chan[18];
|
|
|
|
Bit8u reg104;
|
|
Bit8u reg08;
|
|
Bit8u reg04;
|
|
Bit8u regBD;
|
|
Bit8u vibratoIndex;
|
|
Bit8u tremoloIndex;
|
|
Bit8s vibratoSign;
|
|
Bit8u vibratoShift;
|
|
Bit8u tremoloValue;
|
|
Bit8u vibratoStrength;
|
|
Bit8u tremoloStrength;
|
|
//Mask for allowed wave forms
|
|
Bit8u waveFormMask;
|
|
//0 or -1 when enabled
|
|
Bit8s opl3Active;
|
|
};
|
|
|
|
#ifndef PI
|
|
#define PI 3.14159265358979323846
|
|
#endif
|
|
|
|
#define OPLRATE ((double)(14318180.0 / 288.0))
|
|
#define TREMOLO_TABLE 52
|
|
|
|
//Try to use most precision for frequencies
|
|
//Else try to keep different waves in synch
|
|
//#define WAVE_PRECISION 1
|
|
#ifndef WAVE_PRECISION
|
|
//Wave bits available in the top of the 32bit range
|
|
//Original adlib uses 10.10, we use 10.22
|
|
#define WAVE_BITS 10
|
|
#else
|
|
//Need some extra bits at the top to have room for octaves and frequency multiplier
|
|
//We support to 8 times lower rate
|
|
//128 * 15 * 8 = 15350, 2^13.9, so need 14 bits
|
|
#define WAVE_BITS 14
|
|
#endif
|
|
#define WAVE_SH ( 32 - WAVE_BITS )
|
|
#define WAVE_MASK ( ( 1 << WAVE_SH ) - 1 )
|
|
|
|
//Use the same accuracy as the waves
|
|
#define LFO_SH ( WAVE_SH - 10 )
|
|
//LFO is controlled by our tremolo 256 sample limit
|
|
#define LFO_MAX ( 256 << ( LFO_SH ) )
|
|
|
|
|
|
//Maximum amount of attenuation bits
|
|
//Envelope goes to 511, 9 bits
|
|
#if (DBOPL_WAVE == WAVE_TABLEMUL )
|
|
//Uses the value directly
|
|
#define ENV_BITS ( 9 )
|
|
#else
|
|
//Add 3 bits here for more accuracy and would have to be shifted up either way
|
|
#define ENV_BITS ( 9 )
|
|
#endif
|
|
//Limits of the envelope with those bits and when the envelope goes silent
|
|
#define ENV_MIN 0
|
|
#define ENV_EXTRA ( ENV_BITS - 9 )
|
|
#define ENV_MAX ( 511 << ENV_EXTRA )
|
|
#define ENV_LIMIT ( ( 12 * 256) >> ( 3 - ENV_EXTRA ) )
|
|
#define ENV_SILENT( _X_ ) ( (_X_) >= ENV_LIMIT )
|
|
|
|
//Attack/decay/release rate counter shift
|
|
#define RATE_SH 24
|
|
#define RATE_MASK ( ( 1 << RATE_SH ) - 1 )
|
|
//Has to fit within 16bit lookuptable
|
|
#define MUL_SH 16
|
|
|
|
//Check some ranges
|
|
#if ENV_EXTRA > 3
|
|
#error Too many envelope bits
|
|
#endif
|
|
|
|
|
|
//How much to substract from the base value for the final attenuation
|
|
static const Bit8u KslCreateTable[16] = {
|
|
//0 will always be be lower than 7 * 8
|
|
64, 32, 24, 19,
|
|
16, 12, 11, 10,
|
|
8, 6, 5, 4,
|
|
3, 2, 1, 0,
|
|
};
|
|
|
|
#define M(_X_) ((Bit8u)( (_X_) * 2))
|
|
static const Bit8u FreqCreateTable[16] = {
|
|
M(0.5), M(1 ), M(2 ), M(3 ), M(4 ), M(5 ), M(6 ), M(7 ),
|
|
M(8 ), M(9 ), M(10), M(10), M(12), M(12), M(15), M(15)
|
|
};
|
|
#undef M
|
|
|
|
//We're not including the highest attack rate, that gets a special value
|
|
static const Bit8u AttackSamplesTable[13] = {
|
|
69, 55, 46, 40,
|
|
35, 29, 23, 20,
|
|
19, 15, 11, 10,
|
|
9
|
|
};
|
|
//On a real opl these values take 8 samples to reach and are based upon larger tables
|
|
static const Bit8u EnvelopeIncreaseTable[13] = {
|
|
4, 5, 6, 7,
|
|
8, 10, 12, 14,
|
|
16, 20, 24, 28,
|
|
32,
|
|
};
|
|
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
|
|
static Bit16u ExpTable[ 256 ];
|
|
#endif
|
|
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER )
|
|
//PI table used by WAVEHANDLER
|
|
static Bit16u SinTable[ 512 ];
|
|
#endif
|
|
|
|
#if ( DBOPL_WAVE > WAVE_HANDLER )
|
|
//Layout of the waveform table in 512 entry intervals
|
|
//With overlapping waves we reduce the table to half it's size
|
|
|
|
// | |//\\|____|WAV7|//__|/\ |____|/\/\|
|
|
// |\\//| | |WAV7| | \/| | |
|
|
// |06 |0126|17 |7 |3 |4 |4 5 |5 |
|
|
|
|
//6 is just 0 shifted and masked
|
|
|
|
static Bit16s WaveTable[ 8 * 512 ];
|
|
//Distance into WaveTable the wave starts
|
|
static const Bit16u WaveBaseTable[8] = {
|
|
0x000, 0x200, 0x200, 0x800,
|
|
0xa00, 0xc00, 0x100, 0x400,
|
|
|
|
};
|
|
//Mask the counter with this
|
|
static const Bit16u WaveMaskTable[8] = {
|
|
1023, 1023, 511, 511,
|
|
1023, 1023, 512, 1023,
|
|
};
|
|
|
|
//Where to start the counter on at keyon
|
|
static const Bit16u WaveStartTable[8] = {
|
|
512, 0, 0, 0,
|
|
0, 512, 512, 256,
|
|
};
|
|
#endif
|
|
|
|
#if ( DBOPL_WAVE == WAVE_TABLEMUL )
|
|
static Bit16u MulTable[ 384 ];
|
|
#endif
|
|
|
|
static Bit8u KslTable[ 8 * 16 ];
|
|
static Bit8u TremoloTable[ TREMOLO_TABLE ];
|
|
//Start of a channel behind the chip struct start
|
|
static Bit16u ChanOffsetTable[32];
|
|
//Start of an operator behind the chip struct start
|
|
static Bit16u OpOffsetTable[64];
|
|
|
|
//The lower bits are the shift of the operator vibrato value
|
|
//The highest bit is right shifted to generate -1 or 0 for negation
|
|
//So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0
|
|
static const Bit8s VibratoTable[ 8 ] = {
|
|
1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00,
|
|
1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80
|
|
};
|
|
|
|
//Shift strength for the ksl value determined by ksl strength
|
|
static const Bit8u KslShiftTable[4] = {
|
|
31,1,2,0
|
|
};
|
|
|
|
//Generate a table index and table shift value using input value from a selected rate
|
|
static void EnvelopeSelect( Bit8u val, Bit8u* index, Bit8u* shift ) {
|
|
if ( val < 13 * 4 ) { //Rate 0 - 12
|
|
*shift = 12 - ( val >> 2 );
|
|
*index = val & 3;
|
|
} else if ( val < 15 * 4 ) { //rate 13 - 14
|
|
*shift = 0;
|
|
*index = val - 12 * 4;
|
|
} else { //rate 15 and up
|
|
*shift = 0;
|
|
*index = 12;
|
|
}
|
|
}
|
|
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER )
|
|
/*
|
|
Generate the different waveforms out of the sine/exponetial table using handlers
|
|
*/
|
|
static inline Bits MakeVolume( Bitu wave, Bitu volume ) {
|
|
Bitu total = wave + volume;
|
|
Bitu index = total & 0xff;
|
|
Bitu sig = ExpTable[ index ];
|
|
Bitu exp = total >> 8;
|
|
#if 0
|
|
//Check if we overflow the 31 shift limit
|
|
if ( exp >= 32 ) {
|
|
LOG_MSG( "WTF %d %d", total, exp );
|
|
}
|
|
#endif
|
|
return (sig >> exp);
|
|
};
|
|
|
|
static Bits DB_FASTCALL WaveForm0( Bitu i, Bitu volume ) {
|
|
Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
|
|
Bitu wave = SinTable[i & 511];
|
|
return (MakeVolume( wave, volume ) ^ neg) - neg;
|
|
}
|
|
static Bits DB_FASTCALL WaveForm1( Bitu i, Bitu volume ) {
|
|
Bit32u wave = SinTable[i & 511];
|
|
wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
|
|
return MakeVolume( wave, volume );
|
|
}
|
|
static Bits DB_FASTCALL WaveForm2( Bitu i, Bitu volume ) {
|
|
Bitu wave = SinTable[i & 511];
|
|
return MakeVolume( wave, volume );
|
|
}
|
|
static Bits DB_FASTCALL WaveForm3( Bitu i, Bitu volume ) {
|
|
Bitu wave = SinTable[i & 255];
|
|
wave |= ( ( (i ^ 256 ) & 256) - 1) >> ( 32 - 12 );
|
|
return MakeVolume( wave, volume );
|
|
}
|
|
static Bits DB_FASTCALL WaveForm4( Bitu i, Bitu volume ) {
|
|
//Twice as fast
|
|
i <<= 1;
|
|
Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
|
|
Bitu wave = SinTable[i & 511];
|
|
wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
|
|
return (MakeVolume( wave, volume ) ^ neg) - neg;
|
|
}
|
|
static Bits DB_FASTCALL WaveForm5( Bitu i, Bitu volume ) {
|
|
//Twice as fast
|
|
i <<= 1;
|
|
Bitu wave = SinTable[i & 511];
|
|
wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
|
|
return MakeVolume( wave, volume );
|
|
}
|
|
static Bits DB_FASTCALL WaveForm6( Bitu i, Bitu volume ) {
|
|
Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
|
|
return (MakeVolume( 0, volume ) ^ neg) - neg;
|
|
}
|
|
static Bits DB_FASTCALL WaveForm7( Bitu i, Bitu volume ) {
|
|
//Negative is reversed here
|
|
Bits neg = (( i >> 9) & 1) - 1;
|
|
Bitu wave = (i << 3);
|
|
//When negative the volume also runs backwards
|
|
wave = ((wave ^ neg) - neg) & 4095;
|
|
return (MakeVolume( wave, volume ) ^ neg) - neg;
|
|
}
|
|
|
|
static const WaveHandler WaveHandlerTable[8] = {
|
|
WaveForm0, WaveForm1, WaveForm2, WaveForm3,
|
|
WaveForm4, WaveForm5, WaveForm6, WaveForm7
|
|
};
|
|
|
|
#endif
|
|
|
|
/*
|
|
Operator
|
|
*/
|
|
|
|
//We zero out when rate == 0
|
|
static INLINE void Operator_UpdateAttack( struct Operator *o, const struct Chip* chip ) {
|
|
Bit8u rate = o->reg60 >> 4;
|
|
if ( rate ) {
|
|
Bit8u val = (rate << 2) + o->ksr;
|
|
o->attackAdd = chip->attackRates[ val ];
|
|
o->rateZero &= ~(1 << ATTACK);
|
|
} else {
|
|
o->attackAdd = 0;
|
|
o->rateZero |= (1 << ATTACK);
|
|
}
|
|
}
|
|
|
|
static INLINE void Operator_UpdateDecay( struct Operator *o, const struct Chip* chip ) {
|
|
Bit8u rate = o->reg60 & 0xf;
|
|
if ( rate ) {
|
|
Bit8u val = (rate << 2) + o->ksr;
|
|
o->decayAdd = chip->linearRates[ val ];
|
|
o->rateZero &= ~(1 << DECAY);
|
|
} else {
|
|
o->decayAdd = 0;
|
|
o->rateZero |= (1 << DECAY);
|
|
}
|
|
}
|
|
|
|
static INLINE void Operator_UpdateRelease( struct Operator *o, const struct Chip* chip ) {
|
|
Bit8u rate = o->reg80 & 0xf;
|
|
if ( rate ) {
|
|
Bit8u val = (rate << 2) + o->ksr;
|
|
o->releaseAdd = chip->linearRates[ val ];
|
|
o->rateZero &= ~(1 << RELEASE);
|
|
if ( !(o->reg20 & MASK_SUSTAIN ) ) {
|
|
o->rateZero &= ~( 1 << SUSTAIN );
|
|
}
|
|
} else {
|
|
o->rateZero |= (1 << RELEASE);
|
|
o->releaseAdd = 0;
|
|
if ( !(o->reg20 & MASK_SUSTAIN ) ) {
|
|
o->rateZero |= ( 1 << SUSTAIN );
|
|
}
|
|
}
|
|
}
|
|
|
|
static INLINE void Operator_UpdateAttenuation( struct Operator *o ) {
|
|
Bit8u kslBase = (Bit8u)((o->chanData >> SHIFT_KSLBASE) & 0xff);
|
|
Bit32u tl = o->reg40 & 0x3f;
|
|
Bit8u kslShift = KslShiftTable[ o->reg40 >> 6 ];
|
|
//Make sure the attenuation goes to the right bits
|
|
o->totalLevel = tl << ( ENV_BITS - 7 ); //Total level goes 2 bits below max
|
|
o->totalLevel += ( kslBase << ENV_EXTRA ) >> kslShift;
|
|
}
|
|
|
|
static void Operator_UpdateFrequency( struct Operator *o ) {
|
|
Bit32u freq = o->chanData & (( 1 << 10 ) - 1);
|
|
Bit32u block = (o->chanData >> 10) & 0xff;
|
|
|
|
#ifdef WAVE_PRECISION
|
|
block = 7 - block;
|
|
o->waveAdd = ( freq * o->freqMul ) >> block;
|
|
#else
|
|
o->waveAdd = (freq << block) * o->freqMul;
|
|
#endif
|
|
if ( o->reg20 & MASK_VIBRATO ) {
|
|
o->vibStrength = (Bit8u)(freq >> 7);
|
|
#ifdef WAVE_PRECISION
|
|
o->vibrato = ( o->vibStrength * o->freqMul ) >> block;
|
|
#else
|
|
o->vibrato = ( o->vibStrength << block ) * o->freqMul;
|
|
#endif
|
|
} else {
|
|
o->vibStrength = 0;
|
|
o->vibrato = 0;
|
|
}
|
|
}
|
|
|
|
static void Operator_UpdateRates( struct Operator *o, const struct Chip* chip ) {
|
|
//Mame seems to reverse this where enabling ksr actually lowers
|
|
//the rate, but pdf manuals says otherwise?
|
|
Bit8u newKsr = (Bit8u)((o->chanData >> SHIFT_KEYCODE) & 0xff);
|
|
if ( !( o->reg20 & MASK_KSR ) ) {
|
|
newKsr >>= 2;
|
|
}
|
|
if ( o->ksr == newKsr )
|
|
return;
|
|
o->ksr = newKsr;
|
|
Operator_UpdateAttack( o, chip );
|
|
Operator_UpdateDecay( o, chip );
|
|
Operator_UpdateRelease( o, chip );
|
|
}
|
|
|
|
static INLINE Bit32s Operator_RateForward( struct Operator *o, Bit32u add ) {
|
|
Bit32s ret;
|
|
o->rateIndex += add;
|
|
ret = o->rateIndex >> RATE_SH;
|
|
o->rateIndex = o->rateIndex & RATE_MASK;
|
|
return ret;
|
|
}
|
|
|
|
static INLINE void Operator_SetState( struct Operator *o, Bit8u s );
|
|
|
|
static Bits Operator_Volume_Attack( struct Operator *o ) {
|
|
Bit32s vol = o->volume;
|
|
Bit32s change;
|
|
change = Operator_RateForward( o, o->attackAdd );
|
|
if ( !change )
|
|
return vol;
|
|
vol += ( (~vol) * change ) >> 3;
|
|
if ( vol < ENV_MIN ) {
|
|
o->volume = ENV_MIN;
|
|
o->rateIndex = 0;
|
|
Operator_SetState( o, DECAY );
|
|
return ENV_MIN;
|
|
}
|
|
o->volume = vol;
|
|
return vol;
|
|
}
|
|
|
|
static Bits Operator_Volume_Decay( struct Operator *o ) {
|
|
Bit32s vol = o->volume;
|
|
vol += Operator_RateForward( o, o->decayAdd );
|
|
if ( vol >= o->sustainLevel ) {
|
|
//Check if we didn't overshoot max attenuation, then just go off
|
|
if ( vol >= ENV_MAX ) {
|
|
o->volume = ENV_MAX;
|
|
Operator_SetState( o, OFF );
|
|
return ENV_MAX;
|
|
}
|
|
//Continue as sustain
|
|
o->rateIndex = 0;
|
|
Operator_SetState( o, SUSTAIN );
|
|
}
|
|
o->volume = vol;
|
|
return vol;
|
|
}
|
|
|
|
static Bits Operator_Volume_Sustain( struct Operator *o ) {
|
|
Bit32s vol = o->volume;
|
|
if ( o->reg20 & MASK_SUSTAIN ) {
|
|
return vol;
|
|
}
|
|
//In sustain phase, but not sustaining, do regular release
|
|
vol += Operator_RateForward( o, o->releaseAdd );;
|
|
if ( vol >= ENV_MAX ) {
|
|
o->volume = ENV_MAX;
|
|
Operator_SetState( o, OFF );
|
|
return ENV_MAX;
|
|
}
|
|
o->volume = vol;
|
|
return vol;
|
|
}
|
|
|
|
static Bits Operator_Volume_Release( struct Operator *o ) {
|
|
Bit32s vol = o->volume;
|
|
vol += Operator_RateForward( o, o->releaseAdd );;
|
|
if ( vol >= ENV_MAX ) {
|
|
o->volume = ENV_MAX;
|
|
Operator_SetState( o, OFF );
|
|
return ENV_MAX;
|
|
}
|
|
o->volume = vol;
|
|
return vol;
|
|
}
|
|
|
|
static Bits Operator_Volume_Off( struct Operator *o ) {
|
|
(void)o;
|
|
return ENV_MAX;
|
|
}
|
|
|
|
static const Operator_VolumeHandler VolumeHandlerTable[5] = {
|
|
&Operator_Volume_Off,
|
|
&Operator_Volume_Release,
|
|
&Operator_Volume_Sustain,
|
|
&Operator_Volume_Decay,
|
|
&Operator_Volume_Attack
|
|
};
|
|
|
|
static INLINE void Operator_SetState( struct Operator *o, Bit8u s ) {
|
|
o->state = s;
|
|
o->volHandler = VolumeHandlerTable[ s ];
|
|
}
|
|
|
|
static INLINE Bitu Operator_ForwardVolume(struct Operator *o) {
|
|
return o->currentLevel + (o->volHandler)(o);
|
|
}
|
|
|
|
|
|
static INLINE Bitu Operator_ForwardWave(struct Operator *o) {
|
|
o->waveIndex += o->waveCurrent;
|
|
return o->waveIndex >> WAVE_SH;
|
|
}
|
|
|
|
static void Operator_Write20( struct Operator *o, const struct Chip* chip, Bit8u val ) {
|
|
Bit8u change = (o->reg20 ^ val );
|
|
if ( !change )
|
|
return;
|
|
o->reg20 = val;
|
|
//Shift the tremolo bit over the entire register, saved a branch, YES!
|
|
o->tremoloMask = (Bit8s)(val) >> 7;
|
|
o->tremoloMask &= ~(( 1 << ENV_EXTRA ) -1);
|
|
//Update specific features based on changes
|
|
if ( change & MASK_KSR ) {
|
|
Operator_UpdateRates( o, chip );
|
|
}
|
|
//With sustain enable the volume doesn't change
|
|
if ( o->reg20 & MASK_SUSTAIN || ( !o->releaseAdd ) ) {
|
|
o->rateZero |= ( 1 << SUSTAIN );
|
|
} else {
|
|
o->rateZero &= ~( 1 << SUSTAIN );
|
|
}
|
|
//Frequency multiplier or vibrato changed
|
|
if ( change & (0xf | MASK_VIBRATO) ) {
|
|
o->freqMul = chip->freqMul[ val & 0xf ];
|
|
Operator_UpdateFrequency(o);
|
|
}
|
|
}
|
|
|
|
static void Operator_Write40( struct Operator *o, const struct Chip* chip, Bit8u val ) {
|
|
(void)chip;
|
|
if (!(o->reg40 ^ val ))
|
|
return;
|
|
o->reg40 = val;
|
|
Operator_UpdateAttenuation( o );
|
|
}
|
|
|
|
static void Operator_Write60( struct Operator *o, const struct Chip* chip, Bit8u val ) {
|
|
Bit8u change = o->reg60 ^ val;
|
|
o->reg60 = val;
|
|
if ( change & 0x0f ) {
|
|
Operator_UpdateDecay( o, chip );
|
|
}
|
|
if ( change & 0xf0 ) {
|
|
Operator_UpdateAttack( o, chip );
|
|
}
|
|
}
|
|
|
|
static void Operator_Write80( struct Operator *o, const struct Chip* chip, Bit8u val ) {
|
|
Bit8u change = (o->reg80 ^ val );
|
|
Bit8u sustain;
|
|
if ( !change )
|
|
return;
|
|
o->reg80 = val;
|
|
sustain = val >> 4;
|
|
//Turn 0xf into 0x1f
|
|
sustain |= ( sustain + 1) & 0x10;
|
|
o->sustainLevel = sustain << ( ENV_BITS - 5 );
|
|
if ( change & 0x0f ) {
|
|
Operator_UpdateRelease( o, chip );
|
|
}
|
|
}
|
|
|
|
static void Operator_WriteE0( struct Operator *o, const struct Chip* chip, Bit8u val ) {
|
|
Bit8u waveForm;
|
|
if ( !(o->regE0 ^ val) )
|
|
return;
|
|
//in opl3 mode you can always selet 7 waveforms regardless of waveformselect
|
|
waveForm = val & ( ( 0x3 & chip->waveFormMask ) | (0x7 & chip->opl3Active ) );
|
|
o->regE0 = val;
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER )
|
|
o->waveHandler = WaveHandlerTable[ waveForm ];
|
|
#else
|
|
o->waveBase = WaveTable + WaveBaseTable[ waveForm ];
|
|
o->waveStart = WaveStartTable[ waveForm ] << WAVE_SH;
|
|
o->waveMask = WaveMaskTable[ waveForm ];
|
|
#endif
|
|
}
|
|
|
|
static INLINE unsigned char Operator_Silent(struct Operator *o) {
|
|
if ( !ENV_SILENT( o->totalLevel + o->volume ) )
|
|
return 0;
|
|
if ( !(o->rateZero & ( 1 << o->state ) ) )
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static INLINE void Operator_Prepare( struct Operator *o, const struct Chip* chip ) {
|
|
o->currentLevel = o->totalLevel + (chip->tremoloValue & o->tremoloMask);
|
|
o->waveCurrent = o->waveAdd;
|
|
if ( o->vibStrength >> chip->vibratoShift ) {
|
|
Bit32s add = o->vibrato >> chip->vibratoShift;
|
|
//Sign extend over the shift value
|
|
Bit32s neg = chip->vibratoSign;
|
|
//Negate the add with -1 or 0
|
|
add = ( add ^ neg ) - neg;
|
|
o->waveCurrent += add;
|
|
}
|
|
}
|
|
|
|
static void Operator_KeyOn( struct Operator *o, Bit8u mask ) {
|
|
if ( !o->keyOn ) {
|
|
//Restart the frequency generator
|
|
#if ( DBOPL_WAVE > WAVE_HANDLER )
|
|
o->waveIndex = o->waveStart;
|
|
#else
|
|
o->waveIndex = 0;
|
|
#endif
|
|
o->rateIndex = 0;
|
|
Operator_SetState( o, ATTACK );
|
|
}
|
|
o->keyOn |= mask;
|
|
}
|
|
|
|
static void Operator_KeyOff( struct Operator *o, Bit8u mask ) {
|
|
o->keyOn &= ~mask;
|
|
if ( !o->keyOn ) {
|
|
if ( o->state != OFF ) {
|
|
Operator_SetState( o, RELEASE );
|
|
}
|
|
}
|
|
}
|
|
|
|
static INLINE Bits Operator_GetWave( struct Operator *o, Bitu index, Bitu vol ) {
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER )
|
|
return o->waveHandler( index, vol << ( 3 - ENV_EXTRA ) );
|
|
#elif ( DBOPL_WAVE == WAVE_TABLEMUL )
|
|
return (o->waveBase[ index & o->waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH;
|
|
#elif ( DBOPL_WAVE == WAVE_TABLELOG )
|
|
Bit32s wave = o->waveBase[ index & o->waveMask ];
|
|
Bit32u total = ( wave & 0x7fff ) + vol << ( 3 - ENV_EXTRA );
|
|
Bit32s sig = ExpTable[ total & 0xff ];
|
|
Bit32u exp = total >> 8;
|
|
Bit32s neg = wave >> 16;
|
|
return ((sig ^ neg) - neg) >> exp;
|
|
#else
|
|
#error "No valid wave routine"
|
|
#endif
|
|
}
|
|
|
|
static Bits INLINE Operator_GetSample( struct Operator *o, Bits modulation ) {
|
|
Bitu vol = Operator_ForwardVolume(o);
|
|
if ( ENV_SILENT( vol ) ) {
|
|
//Simply forward the wave
|
|
o->waveIndex += o->waveCurrent;
|
|
return 0;
|
|
} else {
|
|
Bitu index = Operator_ForwardWave(o);
|
|
index += modulation;
|
|
return Operator_GetWave( o, index, vol );
|
|
}
|
|
}
|
|
|
|
static void Operator_Init(struct Operator *o) {
|
|
o->chanData = 0;
|
|
o->freqMul = 0;
|
|
o->waveIndex = 0;
|
|
o->waveAdd = 0;
|
|
o->waveCurrent = 0;
|
|
o->keyOn = 0;
|
|
o->ksr = 0;
|
|
o->reg20 = 0;
|
|
o->reg40 = 0;
|
|
o->reg60 = 0;
|
|
o->reg80 = 0;
|
|
o->regE0 = 0;
|
|
Operator_SetState( o, OFF );
|
|
o->rateZero = (1 << OFF);
|
|
o->sustainLevel = ENV_MAX;
|
|
o->currentLevel = ENV_MAX;
|
|
o->totalLevel = ENV_MAX;
|
|
o->volume = ENV_MAX;
|
|
}
|
|
|
|
/*
|
|
Channel
|
|
*/
|
|
|
|
static INLINE struct Operator* Channel_Op( struct Channel *c, Bitu index ) {
|
|
return &( ( c + (index >> 1) )->op[ index & 1 ]);
|
|
}
|
|
|
|
static struct Channel* Channel_Block_sm2AM( struct Channel *c, struct Chip* chip, Bit32u samples, Bit32s* output ) {
|
|
Bitu i;
|
|
|
|
if ( Operator_Silent( Channel_Op(c, 0) ) && Operator_Silent( Channel_Op(c, 1) ) ) {
|
|
c->old[0] = c->old[1] = 0;
|
|
c->chanActive = 0;
|
|
return (c + 1);
|
|
}
|
|
c->chanActive = 1;
|
|
|
|
//Init the operators with the the current vibrato and tremolo values
|
|
Operator_Prepare( Channel_Op( c, 0 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 1 ), chip );
|
|
|
|
for ( i = 0; i < samples; i++ ) {
|
|
//Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
|
|
Bit32s mod = (Bit32u)((c->old[0] + c->old[1])) >> c->feedback;
|
|
Bit32s sample;
|
|
Bit32s out0;
|
|
c->old[0] = c->old[1];
|
|
c->old[1] = Operator_GetSample( Channel_Op( c, 0 ), mod );
|
|
out0 = c->old[0];
|
|
sample = out0 + Operator_GetSample( Channel_Op( c, 1), 0 );
|
|
output[ i ] += sample & c->mask;
|
|
}
|
|
|
|
return ( c + 1 );
|
|
}
|
|
|
|
static struct Channel* Channel_Block_sm2FM( struct Channel *c, struct Chip* chip, Bit32u samples, Bit32s* output ) {
|
|
Bitu i;
|
|
|
|
if ( Operator_Silent( Channel_Op(c, 1) ) ) {
|
|
c->old[0] = c->old[1] = 0;
|
|
c->chanActive = 0;
|
|
return (c + 1);
|
|
}
|
|
c->chanActive = 1;
|
|
|
|
//Init the operators with the the current vibrato and tremolo values
|
|
Operator_Prepare( Channel_Op( c, 0 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 1 ), chip );
|
|
|
|
for ( i = 0; i < samples; i++ ) {
|
|
//Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
|
|
Bit32s mod = (Bit32u)((c->old[0] + c->old[1])) >> c->feedback;
|
|
Bit32s sample;
|
|
Bit32s out0;
|
|
c->old[0] = c->old[1];
|
|
c->old[1] = Operator_GetSample( Channel_Op( c, 0 ), mod );
|
|
out0 = c->old[0];
|
|
sample = Operator_GetSample( Channel_Op( c, 1 ), out0 );
|
|
output[ i ] += sample & c->mask;
|
|
}
|
|
|
|
return ( c + 1 );
|
|
}
|
|
|
|
static struct Channel* Channel_Block_sm3AM( struct Channel *c, struct Chip* chip, Bit32u samples, Bit32s* output ) {
|
|
Bitu i;
|
|
|
|
if ( Operator_Silent( Channel_Op( c, 0 ) ) && Operator_Silent( Channel_Op( c, 1 ) ) ) {
|
|
c->old[0] = c->old[1] = 0;
|
|
c->chanActive = 0;
|
|
return (c + 1);
|
|
}
|
|
c->chanActive = 1;
|
|
|
|
//Init the operators with the the current vibrato and tremolo values
|
|
Operator_Prepare( Channel_Op( c, 0 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 1 ), chip );
|
|
|
|
for ( i = 0; i < samples; i++ ) {
|
|
//Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
|
|
Bit32s mod = (Bit32u)((c->old[0] + c->old[1])) >> c->feedback;
|
|
Bit32s sample;
|
|
Bit32s out0;
|
|
c->old[0] = c->old[1];
|
|
c->old[1] = Operator_GetSample( Channel_Op( c, 0 ), mod );
|
|
out0 = c->old[0];
|
|
sample = out0 + Operator_GetSample( Channel_Op( c, 1 ), 0 );
|
|
output[ i * 2 + 0 ] += sample & c->maskLeft & c->mask;
|
|
output[ i * 2 + 1 ] += sample & c->maskRight & c->mask;
|
|
}
|
|
|
|
return ( c + 1 );
|
|
}
|
|
|
|
static struct Channel* Channel_Block_sm3FM( struct Channel *c, struct Chip* chip, Bit32u samples, Bit32s* output ) {
|
|
Bitu i;
|
|
|
|
if ( Operator_Silent( Channel_Op( c, 1 ) ) ) {
|
|
c->old[0] = c->old[1] = 0;
|
|
c->chanActive = 0;
|
|
return (c + 1);
|
|
}
|
|
c->chanActive = 1;
|
|
|
|
//Init the operators with the the current vibrato and tremolo values
|
|
Operator_Prepare( Channel_Op( c, 0 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 1 ), chip );
|
|
|
|
for ( i = 0; i < samples; i++ ) {
|
|
//Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
|
|
Bit32s mod = (Bit32u)((c->old[0] + c->old[1])) >> c->feedback;
|
|
Bit32s sample;
|
|
Bit32s out0;
|
|
c->old[0] = c->old[1];
|
|
c->old[1] = Operator_GetSample( Channel_Op( c, 0 ), mod );
|
|
out0 = c->old[0];
|
|
sample = Operator_GetSample( Channel_Op( c, 1 ), out0 );
|
|
output[ i * 2 + 0 ] += sample & c->maskLeft & c->mask;
|
|
output[ i * 2 + 1 ] += sample & c->maskRight & c->mask;
|
|
}
|
|
|
|
return ( c + 1 );
|
|
}
|
|
|
|
static struct Channel* Channel_Block_sm3FMFM( struct Channel *c, struct Chip* chip, Bit32u samples, Bit32s* output ) {
|
|
Bitu i;
|
|
|
|
if ( Operator_Silent( Channel_Op( c, 3 ) ) ) {
|
|
c->old[0] = c->old[1] = 0;
|
|
c->chanActive = 0;
|
|
return (c + 2);
|
|
}
|
|
c->chanActive = 1;
|
|
|
|
//Init the operators with the the current vibrato and tremolo values
|
|
Operator_Prepare( Channel_Op( c, 0 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 1 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 2 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 3 ), chip );
|
|
|
|
for ( i = 0; i < samples; i++ ) {
|
|
//Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
|
|
Bit32s mod = (Bit32u)((c->old[0] + c->old[1])) >> c->feedback;
|
|
Bit32s sample;
|
|
Bit32s out0;
|
|
Bit32s next;
|
|
c->old[0] = c->old[1];
|
|
c->old[1] = Operator_GetSample( Channel_Op( c, 0 ), mod );
|
|
out0 = c->old[0];
|
|
next = Operator_GetSample( Channel_Op( c, 1 ), out0 );
|
|
next = Operator_GetSample( Channel_Op( c, 2 ), next );
|
|
sample = Operator_GetSample( Channel_Op( c, 3 ), next );
|
|
output[ i * 2 + 0 ] += sample & c->maskLeft & c->mask;
|
|
output[ i * 2 + 1 ] += sample & c->maskRight & c->mask;
|
|
}
|
|
|
|
return( c + 2 );
|
|
}
|
|
|
|
static struct Channel* Channel_Block_sm3AMFM( struct Channel *c, struct Chip* chip, Bit32u samples, Bit32s* output ) {
|
|
Bitu i;
|
|
|
|
if ( Operator_Silent( Channel_Op( c, 0 ) ) && Operator_Silent( Channel_Op( c, 3 ) ) ) {
|
|
c->old[0] = c->old[1] = 0;
|
|
c->chanActive = 0;
|
|
return (c + 2);
|
|
}
|
|
c->chanActive = 1;
|
|
|
|
//Init the operators with the the current vibrato and tremolo values
|
|
Operator_Prepare( Channel_Op( c, 0 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 1 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 2 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 3 ), chip );
|
|
|
|
for ( i = 0; i < samples; i++ ) {
|
|
//Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
|
|
Bit32s mod = (Bit32u)((c->old[0] + c->old[1])) >> c->feedback;
|
|
Bit32s sample;
|
|
Bit32s out0;
|
|
Bit32s next;
|
|
c->old[0] = c->old[1];
|
|
c->old[1] = Operator_GetSample( Channel_Op( c, 0 ), mod );
|
|
out0 = c->old[0];
|
|
sample = out0;
|
|
next = Operator_GetSample( Channel_Op( c, 1 ), 0 );
|
|
next = Operator_GetSample( Channel_Op( c, 2 ), next );
|
|
sample += Operator_GetSample( Channel_Op( c, 3 ), next );
|
|
output[ i * 2 + 0 ] += sample & c->maskLeft & c->mask;
|
|
output[ i * 2 + 1 ] += sample & c->maskRight & c->mask;
|
|
}
|
|
|
|
return( c + 2 );
|
|
}
|
|
|
|
static struct Channel* Channel_Block_sm3FMAM( struct Channel *c, struct Chip* chip, Bit32u samples, Bit32s* output ) {
|
|
Bitu i;
|
|
|
|
if ( Operator_Silent( Channel_Op( c, 1) ) && Operator_Silent( Channel_Op( c, 3 ) ) ) {
|
|
c->old[0] = c->old[1] = 0;
|
|
c->chanActive = 0;
|
|
return (c + 2);
|
|
}
|
|
c->chanActive = 1;
|
|
|
|
//Init the operators with the the current vibrato and tremolo values
|
|
Operator_Prepare( Channel_Op( c, 0 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 1 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 2 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 3 ), chip );
|
|
|
|
for ( i = 0; i < samples; i++ ) {
|
|
//Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
|
|
Bit32s mod = (Bit32u)((c->old[0] + c->old[1])) >> c->feedback;
|
|
Bit32s sample;
|
|
Bit32s out0;
|
|
Bit32s next;
|
|
c->old[0] = c->old[1];
|
|
c->old[1] = Operator_GetSample( Channel_Op( c, 0 ), mod );
|
|
out0 = c->old[0];
|
|
sample = Operator_GetSample( Channel_Op( c, 1 ), out0 );
|
|
next = Operator_GetSample( Channel_Op( c, 2 ), 0 );
|
|
sample += Operator_GetSample( Channel_Op( c, 3 ), next );
|
|
output[ i * 2 + 0 ] += sample & c->maskLeft & c->mask;
|
|
output[ i * 2 + 1 ] += sample & c->maskRight & c->mask;
|
|
}
|
|
|
|
return( c + 2 );
|
|
}
|
|
|
|
static struct Channel* Channel_Block_sm3AMAM( struct Channel *c, struct Chip* chip, Bit32u samples, Bit32s* output ) {
|
|
Bitu i;
|
|
|
|
if ( Operator_Silent( Channel_Op( c, 0 ) ) && Operator_Silent( Channel_Op( c, 2 ) ) && Operator_Silent( Channel_Op( c, 3 ) ) ) {
|
|
c->old[0] = c->old[1] = 0;
|
|
c->chanActive = 0;
|
|
return (c + 2);
|
|
}
|
|
c->chanActive = 1;
|
|
|
|
//Init the operators with the the current vibrato and tremolo values
|
|
Operator_Prepare( Channel_Op( c, 0 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 1 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 2 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 3 ), chip );
|
|
|
|
for ( i = 0; i < samples; i++ ) {
|
|
//Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
|
|
Bit32s mod = (Bit32u)((c->old[0] + c->old[1])) >> c->feedback;
|
|
Bit32s sample;
|
|
Bit32s out0;
|
|
Bits next;
|
|
c->old[0] = c->old[1];
|
|
c->old[1] = Operator_GetSample( Channel_Op( c, 0 ), mod );
|
|
out0 = c->old[0];
|
|
sample = out0;
|
|
next = Operator_GetSample( Channel_Op( c, 1 ), 0 );
|
|
sample += Operator_GetSample( Channel_Op( c, 2 ), next );
|
|
sample += Operator_GetSample( Channel_Op( c, 3 ), 0 );
|
|
output[ i * 2 + 0 ] += sample & c->maskLeft & c->mask;
|
|
output[ i * 2 + 1 ] += sample & c->maskRight & c->mask;
|
|
}
|
|
|
|
return( c + 2 );
|
|
}
|
|
|
|
static INLINE Bit32u Chip_ForwardNoise(struct Chip *chip);
|
|
|
|
static Bit32s Channel_GeneratePercussion( struct Channel *chan, struct Chip* chip ) {
|
|
//BassDrum
|
|
Bit32s mod = (Bit32u)((chan->old[0] + chan->old[1])) >> chan->feedback;
|
|
Bit32s sample;
|
|
Bit32u noiseBit;
|
|
Bit32u c2, c5;
|
|
Bit32u phaseBit;
|
|
Bit32u hhVol;
|
|
Bit32u sdVol;
|
|
Bit32u tcVol;
|
|
|
|
chan->chanActive = 0;
|
|
|
|
if ( !Operator_Silent( Channel_Op(chan, 1) ) )
|
|
chan->chanActive++;
|
|
if ( !Operator_Silent( Channel_Op(chan, 4) ) )
|
|
chan->chanActive++;
|
|
|
|
chan->old[0] = chan->old[1];
|
|
chan->old[1] = Operator_GetSample( Channel_Op( chan, 0 ), mod );
|
|
|
|
//When bassdrum is in AM mode first operator is ignored
|
|
if ( chan->regC0 & 1 ) {
|
|
mod = 0;
|
|
} else {
|
|
mod = chan->old[0];
|
|
}
|
|
sample = Operator_GetSample( Channel_Op( chan, 1 ), mod );
|
|
|
|
|
|
//Precalculate stuff used by other outputs
|
|
noiseBit = Chip_ForwardNoise( chip ) & 0x1;
|
|
c2 = Operator_ForwardWave( Channel_Op( chan, 2 ) );
|
|
c5 = Operator_ForwardWave( Channel_Op( chan, 5 ) );
|
|
phaseBit = (((c2 & 0x88) ^ ((c2<<5) & 0x80)) | ((c5 ^ (c5<<2)) & 0x20)) ? 0x02 : 0x00;
|
|
|
|
//Hi-Hat
|
|
hhVol = Operator_ForwardVolume( Channel_Op( chan, 2 ) );
|
|
if ( !ENV_SILENT( hhVol ) ) {
|
|
Bit32u hhIndex = (phaseBit<<8) | (0x34 << ( phaseBit ^ (noiseBit << 1 )));
|
|
sample += Operator_GetWave( Channel_Op( chan, 2 ), hhIndex, hhVol );
|
|
chan->chanActive++;
|
|
}
|
|
//Snare Drum
|
|
sdVol = Operator_ForwardVolume( Channel_Op( chan, 3 ) );
|
|
if ( !ENV_SILENT( sdVol ) ) {
|
|
Bit32u sdIndex = ( 0x100 + (c2 & 0x100) ) ^ ( noiseBit << 8 );
|
|
sample += Operator_GetWave( Channel_Op( chan, 3 ), sdIndex, sdVol );
|
|
chan->chanActive++;
|
|
}
|
|
//Tom-tom
|
|
sample += Operator_GetSample( Channel_Op( chan, 4 ), 0 );
|
|
|
|
//Top-Cymbal
|
|
tcVol = Operator_ForwardVolume( Channel_Op( chan, 5 ) );
|
|
if ( !ENV_SILENT( tcVol ) ) {
|
|
Bit32u tcIndex = (1 + phaseBit) << 8;
|
|
sample += Operator_GetWave( Channel_Op( chan, 5 ), tcIndex, tcVol );
|
|
chan->chanActive++;
|
|
}
|
|
sample <<= 1;
|
|
return sample;
|
|
}
|
|
|
|
static struct Channel* Channel_Block_sm2Percussion( struct Channel *c, struct Chip* chip, Bit32u samples, Bit32s* output ) {
|
|
Bitu i;
|
|
|
|
//Init the operators with the the current vibrato and tremolo values
|
|
Operator_Prepare( Channel_Op( c, 0 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 1 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 2 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 3 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 4 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 5 ), chip );
|
|
|
|
for ( i = 0; i < samples; i++ ) {
|
|
output[i] += Channel_GeneratePercussion( c, chip ) & c->mask;
|
|
}
|
|
|
|
return( c + 3 );
|
|
}
|
|
|
|
static struct Channel* Channel_Block_sm3Percussion( struct Channel *c, struct Chip* chip, Bit32u samples, Bit32s* output ) {
|
|
Bitu i;
|
|
|
|
//Init the operators with the the current vibrato and tremolo values
|
|
Operator_Prepare( Channel_Op( c, 0 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 1 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 2 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 3 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 4 ), chip );
|
|
Operator_Prepare( Channel_Op( c, 5 ), chip );
|
|
|
|
for ( i = 0; i < samples; i++ ) {
|
|
Bit32s sample = Channel_GeneratePercussion( c, chip ) & c->mask;
|
|
output[i * 2 ] += sample;
|
|
output[i * 2 + 1] += sample;
|
|
}
|
|
|
|
return( c + 3 );
|
|
}
|
|
|
|
static void Channel_Init(struct Channel *c) {
|
|
c->old[0] = c->old[1] = 0;
|
|
c->chanData = 0;
|
|
c->regB0 = 0;
|
|
c->regC0 = 0;
|
|
c->maskLeft = -1;
|
|
c->maskRight = -1;
|
|
c->mask = -1;
|
|
c->feedback = 31;
|
|
c->fourMask = 0;
|
|
c->chanActive = 0;
|
|
c->synthHandler = &Channel_Block_sm2FM;
|
|
Operator_Init(&c->op[0]);
|
|
Operator_Init(&c->op[1]);
|
|
}
|
|
|
|
static void Channel_SetChanData( struct Channel *c, const struct Chip* chip, Bit32u data ) {
|
|
Bit32u change = c->chanData ^ data;
|
|
c->chanData = data;
|
|
Channel_Op( c, 0 )->chanData = data;
|
|
Channel_Op( c, 1 )->chanData = data;
|
|
//Since a frequency update triggered this, always update frequency
|
|
Operator_UpdateFrequency( Channel_Op( c, 0 ) );
|
|
Operator_UpdateFrequency( Channel_Op( c, 1 ) );
|
|
if ( change & ( 0xff << SHIFT_KSLBASE ) ) {
|
|
Operator_UpdateAttenuation( Channel_Op( c, 0 ) );
|
|
Operator_UpdateAttenuation( Channel_Op( c, 1 ) );
|
|
}
|
|
if ( change & ( 0xff << SHIFT_KEYCODE ) ) {
|
|
Operator_UpdateRates( Channel_Op( c, 0 ), chip );
|
|
Operator_UpdateRates( Channel_Op( c, 1 ), chip );
|
|
}
|
|
}
|
|
|
|
static void Channel_UpdateFrequency( struct Channel *c, const struct Chip* chip, Bit8u fourOp ) {
|
|
//Extrace the frequency bits
|
|
Bit32u data = c->chanData & 0xffff;
|
|
Bit32u kslBase = KslTable[ data >> 6 ];
|
|
Bit32u keyCode = ( data & 0x1c00) >> 9;
|
|
if ( chip->reg08 & 0x40 ) {
|
|
keyCode |= ( data & 0x100)>>8; /* notesel == 1 */
|
|
} else {
|
|
keyCode |= ( data & 0x200)>>9; /* notesel == 0 */
|
|
}
|
|
//Add the keycode and ksl into the highest bits of chanData
|
|
data |= (keyCode << SHIFT_KEYCODE) | ( kslBase << SHIFT_KSLBASE );
|
|
Channel_SetChanData( c + 0, chip, data );
|
|
if ( fourOp & 0x3f ) {
|
|
Channel_SetChanData( c + 1, chip, data );
|
|
}
|
|
}
|
|
|
|
static void Channel_WriteA0( struct Channel *c, const struct Chip* chip, Bit8u val ) {
|
|
Bit8u fourOp = chip->reg104 & chip->opl3Active & c->fourMask;
|
|
//Don't handle writes to silent fourop channels
|
|
Bit32u change;
|
|
if ( fourOp > 0x80 )
|
|
return;
|
|
change = (c->chanData ^ val ) & 0xff;
|
|
if ( change ) {
|
|
c->chanData ^= change;
|
|
Channel_UpdateFrequency( c, chip, fourOp );
|
|
}
|
|
}
|
|
|
|
static void Channel_WriteB0( struct Channel *c, const struct Chip* chip, Bit8u val ) {
|
|
Bit8u fourOp = chip->reg104 & chip->opl3Active & c->fourMask;
|
|
Bitu change;
|
|
//Don't handle writes to silent fourop channels
|
|
if ( fourOp > 0x80 )
|
|
return;
|
|
change = ( c->chanData ^ ( val << 8 ) ) & 0x1f00;
|
|
if ( change ) {
|
|
c->chanData ^= change;
|
|
Channel_UpdateFrequency( c, chip, fourOp );
|
|
}
|
|
//Check for a change in the keyon/off state
|
|
if ( !((val ^ c->regB0) & 0x20))
|
|
return;
|
|
c->regB0 = val;
|
|
if ( val & 0x20 ) {
|
|
Operator_KeyOn( Channel_Op( c, 0 ), 0x1 );
|
|
Operator_KeyOn( Channel_Op( c, 1 ), 0x1 );
|
|
if ( fourOp & 0x3f ) {
|
|
Operator_KeyOn( Channel_Op( c, 2 ), 0x1 );
|
|
Operator_KeyOn( Channel_Op( c, 3 ), 0x1 );
|
|
}
|
|
} else {
|
|
Operator_KeyOff( Channel_Op( c, 0 ), 0x1 );
|
|
Operator_KeyOff( Channel_Op( c, 1 ), 0x1 );
|
|
if ( fourOp & 0x3f ) {
|
|
Operator_KeyOff( Channel_Op( c, 2 ), 0x1 );
|
|
Operator_KeyOff( Channel_Op( c, 3 ), 0x1 );
|
|
}
|
|
}
|
|
}
|
|
|
|
static void Channel_WriteC0( struct Channel *c, const struct Chip* chip, Bit8u val ) {
|
|
Bit8u change = val ^ c->regC0;
|
|
if ( !change )
|
|
return;
|
|
c->regC0 = val;
|
|
c->feedback = ( val >> 1 ) & 7;
|
|
if ( c->feedback ) {
|
|
//We shift the input to the right 10 bit wave index value
|
|
c->feedback = 9 - c->feedback;
|
|
} else {
|
|
c->feedback = 31;
|
|
}
|
|
//Select the new synth mode
|
|
if ( chip->opl3Active ) {
|
|
//4-op mode enabled for this channel
|
|
if ( (chip->reg104 & c->fourMask) & 0x3f ) {
|
|
struct Channel* chan0, *chan1;
|
|
Bit8u synth;
|
|
//Check if it's the 2nd channel in a 4-op
|
|
if ( !(c->fourMask & 0x80 ) ) {
|
|
chan0 = c;
|
|
chan1 = c + 1;
|
|
} else {
|
|
chan0 = c - 1;
|
|
chan1 = c;
|
|
}
|
|
|
|
synth = ( (chan0->regC0 & 1) << 0 )| (( chan1->regC0 & 1) << 1 );
|
|
switch ( synth ) {
|
|
case 0:
|
|
chan0->synthHandler = &Channel_Block_sm3FMFM;
|
|
break;
|
|
case 1:
|
|
chan0->synthHandler = &Channel_Block_sm3AMFM;
|
|
break;
|
|
case 2:
|
|
chan0->synthHandler = &Channel_Block_sm3FMAM;
|
|
break;
|
|
case 3:
|
|
chan0->synthHandler = &Channel_Block_sm3AMAM;
|
|
break;
|
|
}
|
|
//Disable updating percussion channels
|
|
} else if ((c->fourMask & 0x40) && ( chip->regBD & 0x20) ) {
|
|
|
|
//Regular dual op, am or fm
|
|
} else if ( val & 1 ) {
|
|
c->synthHandler = &Channel_Block_sm3AM;
|
|
} else {
|
|
c->synthHandler = &Channel_Block_sm3FM;
|
|
}
|
|
c->maskLeft = ( val & 0x10 ) ? -1 : 0;
|
|
c->maskRight = ( val & 0x20 ) ? -1 : 0;
|
|
//opl2 active
|
|
} else {
|
|
//Disable updating percussion channels
|
|
if ( (c->fourMask & 0x40) && ( chip->regBD & 0x20 ) ) {
|
|
|
|
//Regular dual op, am or fm
|
|
} else if ( val & 1 ) {
|
|
c->synthHandler = &Channel_Block_sm2AM;
|
|
} else {
|
|
c->synthHandler = &Channel_Block_sm2FM;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void Channel_ResetC0( struct Channel *c, const struct Chip* chip ) {
|
|
Bit8u val = c->regC0;
|
|
c->regC0 ^= 0xff;
|
|
Channel_WriteC0( c, chip, val );
|
|
}
|
|
|
|
/*
|
|
Chip
|
|
*/
|
|
|
|
Bitu Chip_GetSize()
|
|
{
|
|
return sizeof(struct Chip);
|
|
}
|
|
|
|
static void InitTables( void );
|
|
|
|
void Chip_Init(void *_chip) {
|
|
Bit32u i;
|
|
struct Chip *chip = (struct Chip *)_chip;
|
|
InitTables();
|
|
chip->reg08 = 0;
|
|
chip->reg04 = 0;
|
|
chip->regBD = 0;
|
|
chip->reg104 = 0;
|
|
chip->opl3Active = 0;
|
|
for (i = 0; i < 18; ++i)
|
|
Channel_Init( &chip->chan[i] );
|
|
}
|
|
|
|
static INLINE Bit32u Chip_ForwardNoise(struct Chip *chip) {
|
|
Bitu count;
|
|
chip->noiseCounter += chip->noiseAdd;
|
|
count = chip->noiseCounter >> LFO_SH;
|
|
chip->noiseCounter &= WAVE_MASK;
|
|
for ( ; count > 0; --count ) {
|
|
//Noise calculation from mame
|
|
chip->noiseValue ^= ( 0x800302 ) & ( 0 - (chip->noiseValue & 1 ) );
|
|
chip->noiseValue >>= 1;
|
|
}
|
|
return chip->noiseValue;
|
|
}
|
|
|
|
static Bit32u Chip_ForwardLFO( struct Chip *chip, Bit32u samples ) {
|
|
Bit32u todo, count;
|
|
|
|
//Current vibrato value, runs 4x slower than tremolo
|
|
chip->vibratoSign = ( VibratoTable[ chip->vibratoIndex >> 2] ) >> 7;
|
|
chip->vibratoShift = ( VibratoTable[ chip->vibratoIndex >> 2] & 7) + chip->vibratoStrength;
|
|
chip->tremoloValue = TremoloTable[ chip->tremoloIndex ] >> chip->tremoloStrength;
|
|
|
|
//Check hom many samples there can be done before the value changes
|
|
todo = LFO_MAX - chip->lfoCounter;
|
|
count = (todo + chip->lfoAdd - 1) / chip->lfoAdd;
|
|
if ( count > samples ) {
|
|
count = samples;
|
|
chip->lfoCounter += count * chip->lfoAdd;
|
|
} else {
|
|
chip->lfoCounter += count * chip->lfoAdd;
|
|
chip->lfoCounter &= (LFO_MAX - 1);
|
|
//Maximum of 7 vibrato value * 4
|
|
chip->vibratoIndex = ( chip->vibratoIndex + 1 ) & 31;
|
|
//Clip tremolo to the the table size
|
|
if ( chip->tremoloIndex + 1 < TREMOLO_TABLE )
|
|
++chip->tremoloIndex;
|
|
else
|
|
chip->tremoloIndex = 0;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static void Chip_WriteBD( struct Chip *chip, Bit8u val ) {
|
|
Bit8u change = chip->regBD ^ val;
|
|
if ( !change )
|
|
return;
|
|
chip->regBD = val;
|
|
//TODO could do this with shift and xor?
|
|
chip->vibratoStrength = (val & 0x40) ? 0x00 : 0x01;
|
|
chip->tremoloStrength = (val & 0x80) ? 0x00 : 0x02;
|
|
if ( val & 0x20 ) {
|
|
//Drum was just enabled, make sure channel 6 has the right synth
|
|
if ( change & 0x20 ) {
|
|
if ( chip->opl3Active ) {
|
|
chip->chan[6].synthHandler = &Channel_Block_sm3Percussion;
|
|
} else {
|
|
chip->chan[6].synthHandler = &Channel_Block_sm2Percussion;
|
|
}
|
|
}
|
|
//Bass Drum
|
|
if ( val & 0x10 ) {
|
|
Operator_KeyOn( &chip->chan[6].op[0], 0x2 );
|
|
Operator_KeyOn( &chip->chan[6].op[1], 0x2 );
|
|
} else {
|
|
Operator_KeyOff( &chip->chan[6].op[0], 0x2 );
|
|
Operator_KeyOff( &chip->chan[6].op[1], 0x2 );
|
|
}
|
|
//Hi-Hat
|
|
if ( val & 0x1 ) {
|
|
Operator_KeyOn( &chip->chan[7].op[0], 0x2 );
|
|
} else {
|
|
Operator_KeyOff( &chip->chan[7].op[0], 0x2 );
|
|
}
|
|
//Snare
|
|
if ( val & 0x8 ) {
|
|
Operator_KeyOn( &chip->chan[7].op[1], 0x2 );
|
|
} else {
|
|
Operator_KeyOff( &chip->chan[7].op[1], 0x2 );
|
|
}
|
|
//Tom-Tom
|
|
if ( val & 0x4 ) {
|
|
Operator_KeyOn( &chip->chan[8].op[0], 0x2 );
|
|
} else {
|
|
Operator_KeyOff( &chip->chan[8].op[0], 0x2 );
|
|
}
|
|
//Top Cymbal
|
|
if ( val & 0x2 ) {
|
|
Operator_KeyOn( &chip->chan[8].op[1], 0x2 );
|
|
} else {
|
|
Operator_KeyOff( &chip->chan[8].op[1], 0x2 );
|
|
}
|
|
//Toggle keyoffs when we turn off the percussion
|
|
} else if ( change & 0x20 ) {
|
|
//Trigger a reset to setup the original synth handler
|
|
Channel_ResetC0( &chip->chan[6], chip );
|
|
Operator_KeyOff( &chip->chan[6].op[0], 0x2 );
|
|
Operator_KeyOff( &chip->chan[6].op[1], 0x2 );
|
|
Operator_KeyOff( &chip->chan[7].op[0], 0x2 );
|
|
Operator_KeyOff( &chip->chan[7].op[1], 0x2 );
|
|
Operator_KeyOff( &chip->chan[8].op[0], 0x2 );
|
|
Operator_KeyOff( &chip->chan[8].op[1], 0x2 );
|
|
}
|
|
}
|
|
|
|
|
|
#define REGOP( _FUNC_ ) \
|
|
index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f ); \
|
|
if ( OpOffsetTable[ index ] ) { \
|
|
struct Operator* regOp = (struct Operator*)( ((char *)chip ) + OpOffsetTable[ index ] ); \
|
|
Operator_##_FUNC_( regOp, chip, val ); \
|
|
}
|
|
|
|
#define REGCHAN( _FUNC_ ) \
|
|
index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf ); \
|
|
if ( ChanOffsetTable[ index ] ) { \
|
|
struct Channel* regChan = (struct Channel*)( ((char *)chip ) + ChanOffsetTable[ index ] ); \
|
|
Channel_##_FUNC_( regChan, chip, val ); \
|
|
}
|
|
|
|
void Chip_WriteReg( void *_chip, Bit32u reg, Bit8u val ) {
|
|
Bitu index;
|
|
struct Chip *chip = (struct Chip *)_chip;
|
|
switch ( (reg & 0xf0) >> 4 ) {
|
|
case 0x00 >> 4:
|
|
if ( reg == 0x01 ) {
|
|
chip->waveFormMask = ( val & 0x20 ) ? 0x7 : 0x0;
|
|
} else if ( reg == 0x104 ) {
|
|
//Only detect changes in lowest 6 bits
|
|
if ( !((chip->reg104 ^ val) & 0x3f) )
|
|
return;
|
|
//Always keep the highest bit enabled, for checking > 0x80
|
|
chip->reg104 = 0x80 | ( val & 0x3f );
|
|
} else if ( reg == 0x105 ) {
|
|
int i;
|
|
//MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register
|
|
if ( !((chip->opl3Active ^ val) & 1 ) )
|
|
return;
|
|
chip->opl3Active = ( val & 1 ) ? 0xff : 0;
|
|
//Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers
|
|
for ( i = 0; i < 18; i++ ) {
|
|
Channel_ResetC0( &chip->chan[i], chip );
|
|
}
|
|
} else if ( reg == 0x08 ) {
|
|
chip->reg08 = val;
|
|
}
|
|
case 0x10 >> 4:
|
|
break;
|
|
case 0x20 >> 4:
|
|
case 0x30 >> 4:
|
|
REGOP( Write20 );
|
|
break;
|
|
case 0x40 >> 4:
|
|
case 0x50 >> 4:
|
|
REGOP( Write40 );
|
|
break;
|
|
case 0x60 >> 4:
|
|
case 0x70 >> 4:
|
|
REGOP( Write60 );
|
|
break;
|
|
case 0x80 >> 4:
|
|
case 0x90 >> 4:
|
|
REGOP( Write80 );
|
|
break;
|
|
case 0xa0 >> 4:
|
|
REGCHAN( WriteA0 );
|
|
break;
|
|
case 0xb0 >> 4:
|
|
if ( reg == 0xbd ) {
|
|
Chip_WriteBD( chip, val );
|
|
} else {
|
|
REGCHAN( WriteB0 );
|
|
}
|
|
break;
|
|
case 0xc0 >> 4:
|
|
REGCHAN( WriteC0 );
|
|
case 0xd0 >> 4:
|
|
break;
|
|
case 0xe0 >> 4:
|
|
case 0xf0 >> 4:
|
|
REGOP( WriteE0 );
|
|
break;
|
|
}
|
|
}
|
|
|
|
Bit32u Chip_WriteAddr( void *_chip, Bit32u port, Bit8u val ) {
|
|
struct Chip *chip = (struct Chip *)_chip;
|
|
switch ( port & 3 ) {
|
|
case 0:
|
|
return val;
|
|
case 2:
|
|
if ( chip->opl3Active || (val == 0x05) )
|
|
return 0x100 | val;
|
|
else
|
|
return val;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void Chip_GenerateBlock2( struct Chip *chip, Bitu total, Bit32s* output ) {
|
|
while ( total > 0 ) {
|
|
struct Channel* ch;
|
|
int count;
|
|
Bit32u samples = Chip_ForwardLFO( chip, total );
|
|
Bitu i;
|
|
for ( i = 0; i < samples; i++ ) {
|
|
output[i] = 0;
|
|
}
|
|
count = 0;
|
|
for( ch = chip->chan; ch < chip->chan + 9; ) {
|
|
count++;
|
|
ch = (ch->synthHandler)( ch, chip, samples, output );
|
|
}
|
|
total -= samples;
|
|
output += samples;
|
|
}
|
|
}
|
|
|
|
static void Chip_GenerateBlock3( struct Chip *chip, Bitu total, Bit32s* output ) {
|
|
while ( total > 0 ) {
|
|
struct Channel* ch;
|
|
int count;
|
|
Bit32u samples = Chip_ForwardLFO( chip, total );
|
|
Bitu i;
|
|
for ( i = 0; i < samples; i++ ) {
|
|
output[i * 2 + 0 ] = 0;
|
|
output[i * 2 + 1 ] = 0;
|
|
}
|
|
count = 0;
|
|
for( ch = chip->chan; ch < chip->chan + 18; ) {
|
|
count++;
|
|
ch = (ch->synthHandler)( ch, chip, samples, output );
|
|
}
|
|
total -= samples;
|
|
output += samples * 2;
|
|
}
|
|
}
|
|
|
|
void Chip_GenerateBlock_Mono( void *_chip, Bitu total, Bit32s* output ) {
|
|
struct Chip *chip = (struct Chip *)_chip;
|
|
if (chip->opl3Active) {
|
|
while ( total > 0 ) {
|
|
Bit32s temp[512];
|
|
Bitu todo = ( total > 256 ) ? 256 : total, i;
|
|
Chip_GenerateBlock3( chip, todo, temp );
|
|
total -= todo;
|
|
todo *= 2;
|
|
for ( i = 0; i < todo; i += 2 ) {
|
|
*output++ = (temp[i] + temp[i + 1]) >> 1;
|
|
}
|
|
}
|
|
} else
|
|
Chip_GenerateBlock2( chip, total, output );
|
|
}
|
|
|
|
void Chip_GenerateBlock_Stereo( void *_chip, Bitu total, Bit32s* output) {
|
|
struct Chip *chip = (struct Chip *)_chip;
|
|
if (!chip->opl3Active) {
|
|
Chip_GenerateBlock2( chip, total, output );
|
|
while ( total-- ) {
|
|
output[total * 2 + 1] = output[total * 2] = output[total];
|
|
}
|
|
} else
|
|
Chip_GenerateBlock3( chip, total, output );
|
|
}
|
|
|
|
Bitu Chip_GetActiveChannels( void *_chip ) {
|
|
struct Chip *chip = (struct Chip *)_chip;
|
|
int totalChannels = (chip->opl3Active) ? 18 : 9;
|
|
int i;
|
|
Bitu active = 0;
|
|
for ( i = 0; i < totalChannels; ++i )
|
|
active += chip->chan[i].chanActive;
|
|
return active;
|
|
}
|
|
|
|
void Chip_Mute( void *_chip, Bit8u channel, Bit8u mute ) {
|
|
struct Chip *chip = (struct Chip *)_chip;
|
|
if (channel >= 18)
|
|
return;
|
|
chip->chan[channel].mask = mute ? 0 : -1;
|
|
}
|
|
|
|
void Chip_Setup( void *_chip, Bit32u clock, Bit32u rate ) {
|
|
struct Chip *chip = (struct Chip *)_chip;
|
|
double original = (double)clock / 288.0;
|
|
double scale = original / (double)rate;
|
|
#ifdef WAVE_PRECISION
|
|
double freqScale;
|
|
#else
|
|
Bit32u freqScale;
|
|
#endif
|
|
int i;
|
|
Bit8u j;
|
|
|
|
if (fabs(scale - 1.0) < 0.00001)
|
|
scale = 1.0;
|
|
|
|
//Noise counter is run at the same precision as general waves
|
|
chip->noiseAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
|
|
chip->noiseCounter = 0;
|
|
chip->noiseValue = 1; //Make sure it triggers the noise xor the first time
|
|
//The low frequency oscillation counter
|
|
//Every time his overflows vibrato and tremoloindex are increased
|
|
chip->lfoAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
|
|
chip->lfoCounter = 0;
|
|
chip->vibratoIndex = 0;
|
|
chip->tremoloIndex = 0;
|
|
|
|
//With higher octave this gets shifted up
|
|
//-1 since the freqCreateTable = *2
|
|
#ifdef WAVE_PRECISION
|
|
freqScale = ( 1 << 7 ) * scale * ( 1 << ( WAVE_SH - 1 - 10));
|
|
for ( i = 0; i < 16; i++ ) {
|
|
//Use rounding with 0.5
|
|
chip->freqMul[i] = (Bit32u)( 0.5 + freqScale * FreqCreateTable[ i ] );
|
|
}
|
|
#else
|
|
freqScale = (Bit32u)( 0.5 + scale * ( 1 << ( WAVE_SH - 1 - 10)));
|
|
for ( i = 0; i < 16; i++ ) {
|
|
chip->freqMul[i] = freqScale * FreqCreateTable[ i ];
|
|
}
|
|
#endif
|
|
|
|
//-3 since the real envelope takes 8 steps to reach the single value we supply
|
|
for ( j = 0; j < 76; j++ ) {
|
|
Bit8u index, shift;
|
|
EnvelopeSelect( j, &index, &shift );
|
|
chip->linearRates[j] = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH + ENV_EXTRA - shift - 3 )));
|
|
}
|
|
//Generate the best matching attack rate
|
|
for ( j = 0; j < 62; j++ ) {
|
|
Bit8u index, shift;
|
|
Bit32s original, guessAdd, bestAdd;
|
|
Bit32u bestDiff, passes;
|
|
EnvelopeSelect( j, &index, &shift );
|
|
//Original amount of samples the attack would take
|
|
original = (Bit32u)( (AttackSamplesTable[ index ] << shift) / scale);
|
|
|
|
guessAdd = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH - shift - 3 )));
|
|
bestAdd = guessAdd;
|
|
bestDiff = 1 << 30;
|
|
for( passes = 0; passes < 16; passes ++ ) {
|
|
Bit32s volume = ENV_MAX;
|
|
Bit32s samples = 0;
|
|
Bit32u count = 0;
|
|
Bit32s diff;
|
|
Bit32u lDiff;
|
|
while ( volume > 0 && samples < original * 2 ) {
|
|
Bit32s change;
|
|
count += guessAdd;
|
|
change = count >> RATE_SH;
|
|
count &= RATE_MASK;
|
|
if ( change ) {
|
|
volume += ( ~volume * change ) >> 3;
|
|
}
|
|
samples++;
|
|
|
|
}
|
|
diff = original - samples;
|
|
lDiff = (Bit32u) labs( diff );
|
|
//Init last on first pass
|
|
if ( lDiff < bestDiff ) {
|
|
bestDiff = lDiff;
|
|
bestAdd = guessAdd;
|
|
if ( !bestDiff )
|
|
break;
|
|
}
|
|
//Below our target
|
|
if ( diff < 0 ) {
|
|
//Better than the last time
|
|
Bit32s mul = ((original - diff) << 12) / original;
|
|
guessAdd = ((guessAdd * mul) >> 12);
|
|
guessAdd++;
|
|
} else if ( diff > 0 ) {
|
|
Bit32s mul = ((original - diff) << 12) / original;
|
|
guessAdd = (guessAdd * mul) >> 12;
|
|
guessAdd--;
|
|
}
|
|
}
|
|
chip->attackRates[j] = bestAdd;
|
|
}
|
|
for ( j = 62; j < 76; j++ ) {
|
|
//This should provide instant volume maximizing
|
|
chip->attackRates[j] = 8 << RATE_SH;
|
|
}
|
|
//Setup the channels with the correct four op flags
|
|
//Channels are accessed through a table so they appear linear here
|
|
chip->chan[ 0].fourMask = 0x00 | ( 1 << 0 );
|
|
chip->chan[ 1].fourMask = 0x80 | ( 1 << 0 );
|
|
chip->chan[ 2].fourMask = 0x00 | ( 1 << 1 );
|
|
chip->chan[ 3].fourMask = 0x80 | ( 1 << 1 );
|
|
chip->chan[ 4].fourMask = 0x00 | ( 1 << 2 );
|
|
chip->chan[ 5].fourMask = 0x80 | ( 1 << 2 );
|
|
|
|
chip->chan[ 9].fourMask = 0x00 | ( 1 << 3 );
|
|
chip->chan[10].fourMask = 0x80 | ( 1 << 3 );
|
|
chip->chan[11].fourMask = 0x00 | ( 1 << 4 );
|
|
chip->chan[12].fourMask = 0x80 | ( 1 << 4 );
|
|
chip->chan[13].fourMask = 0x00 | ( 1 << 5 );
|
|
chip->chan[14].fourMask = 0x80 | ( 1 << 5 );
|
|
|
|
//mark the percussion channels
|
|
chip->chan[ 6].fourMask = 0x40;
|
|
chip->chan[ 7].fourMask = 0x40;
|
|
chip->chan[ 8].fourMask = 0x40;
|
|
|
|
//Clear Everything in opl3 mode
|
|
Chip_WriteReg( chip, 0x105, 0x1 );
|
|
for ( i = 0; i < 512; i++ ) {
|
|
if ( i == 0x105 )
|
|
continue;
|
|
Chip_WriteReg( chip, i, 0xff );
|
|
Chip_WriteReg( chip, i, 0x0 );
|
|
}
|
|
Chip_WriteReg( chip, 0x105, 0x0 );
|
|
//Clear everything in opl2 mode
|
|
for ( i = 0; i < 256; i++ ) {
|
|
Chip_WriteReg( chip, i, 0xff );
|
|
Chip_WriteReg( chip, i, 0x0 );
|
|
}
|
|
}
|
|
|
|
static unsigned char doneTables = 0;
|
|
static void InitTables( void ) {
|
|
int i, oct;
|
|
Bit8u j;
|
|
Bitu k;
|
|
if ( doneTables )
|
|
return;
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
|
|
//Exponential volume table, same as the real adlib
|
|
for ( int i = 0; i < 256; i++ ) {
|
|
//Save them in reverse
|
|
ExpTable[i] = (int)( 0.5 + ( pow(2.0, ( 255 - i) * ( 1.0 /256 ) )-1) * 1024 );
|
|
ExpTable[i] += 1024; //or remove the -1 oh well :)
|
|
//Preshift to the left once so the final volume can shift to the right
|
|
ExpTable[i] *= 2;
|
|
}
|
|
#endif
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER )
|
|
//Add 0.5 for the trunc rounding of the integer cast
|
|
//Do a PI sinetable instead of the original 0.5 PI
|
|
for ( int i = 0; i < 512; i++ ) {
|
|
SinTable[i] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
|
|
}
|
|
#endif
|
|
#if ( DBOPL_WAVE == WAVE_TABLEMUL )
|
|
//Multiplication based tables
|
|
for ( i = 0; i < 384; i++ ) {
|
|
int s = i * 8;
|
|
//TODO maybe keep some of the precision errors of the original table?
|
|
double val = ( 0.5 + ( pow(2.0, -1.0 + ( 255 - s) * ( 1.0 /256 ) )) * ( 1 << MUL_SH ));
|
|
MulTable[i] = (Bit16u)(val);
|
|
}
|
|
|
|
//Sine Wave Base
|
|
for ( i = 0; i < 512; i++ ) {
|
|
WaveTable[ 0x0200 + i ] = (Bit16s)(sin( (i + 0.5) * (PI / 512.0) ) * 4084);
|
|
WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ];
|
|
}
|
|
//Exponential wave
|
|
for ( i = 0; i < 256; i++ ) {
|
|
WaveTable[ 0x700 + i ] = (Bit16s)( 0.5 + ( pow(2.0, -1.0 + ( 255 - i * 8) * ( 1.0 /256 ) ) ) * 4085 );
|
|
WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ];
|
|
}
|
|
#endif
|
|
#if ( DBOPL_WAVE == WAVE_TABLELOG )
|
|
//Sine Wave Base
|
|
for ( i = 0; i < 512; i++ ) {
|
|
WaveTable[ 0x0200 + i ] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
|
|
WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i];
|
|
}
|
|
//Exponential wave
|
|
for ( i = 0; i < 256; i++ ) {
|
|
WaveTable[ 0x700 + i ] = i * 8;
|
|
WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8;
|
|
}
|
|
#endif
|
|
|
|
// | |//\\|____|WAV7|//__|/\ |____|/\/\|
|
|
// |\\//| | |WAV7| | \/| | |
|
|
// |06 |0126|27 |7 |3 |4 |4 5 |5 |
|
|
|
|
#if (( DBOPL_WAVE == WAVE_TABLELOG ) || ( DBOPL_WAVE == WAVE_TABLEMUL ))
|
|
for ( i = 0; i < 256; i++ ) {
|
|
//Fill silence gaps
|
|
WaveTable[ 0x400 + i ] = WaveTable[0];
|
|
WaveTable[ 0x500 + i ] = WaveTable[0];
|
|
WaveTable[ 0x900 + i ] = WaveTable[0];
|
|
WaveTable[ 0xc00 + i ] = WaveTable[0];
|
|
WaveTable[ 0xd00 + i ] = WaveTable[0];
|
|
//Replicate sines in other pieces
|
|
WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ];
|
|
//double speed sines
|
|
WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ];
|
|
WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ];
|
|
WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ];
|
|
WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ];
|
|
}
|
|
#endif
|
|
|
|
//Create the ksl table
|
|
for ( oct = 0; oct < 8; oct++ ) {
|
|
int base = oct * 8;
|
|
for ( i = 0; i < 16; i++ ) {
|
|
int val = base - KslCreateTable[i];
|
|
if ( val < 0 )
|
|
val = 0;
|
|
//*4 for the final range to match attenuation range
|
|
KslTable[ oct * 16 + i ] = (Bit8u)(val * 4);
|
|
}
|
|
}
|
|
//Create the Tremolo table, just increase and decrease a triangle wave
|
|
for ( j = 0; j < TREMOLO_TABLE / 2; j++ ) {
|
|
Bit8u val = j << ENV_EXTRA;
|
|
TremoloTable[j] = val;
|
|
TremoloTable[TREMOLO_TABLE - 1 - j] = val;
|
|
}
|
|
//Create a table with offsets of the channels from the start of the chip
|
|
for ( k = 0; k < 32; k++ ) {
|
|
Bitu index = k & 0xf;
|
|
Bitu blah;
|
|
struct Chip *chip = 0;
|
|
if ( index >= 9 ) {
|
|
ChanOffsetTable[k] = 0;
|
|
continue;
|
|
}
|
|
//Make sure the four op channels follow eachother
|
|
if ( index < 6 ) {
|
|
index = (index % 3) * 2 + ( index / 3 );
|
|
}
|
|
//Add back the bits for highest ones
|
|
if ( k >= 16 )
|
|
index += 9;
|
|
blah = (Bitu)( (unsigned long)( &(chip->chan[ index ]) ) );
|
|
ChanOffsetTable[k] = (Bit16u)blah;
|
|
}
|
|
//Same for operators
|
|
for ( k = 0; k < 64; k++ ) {
|
|
Bitu chNum;
|
|
Bitu opNum;
|
|
Bitu blah;
|
|
struct Channel* chan = 0;
|
|
if ( k % 8 >= 6 || ( (k / 8) % 4 == 3 ) ) {
|
|
OpOffsetTable[k] = 0;
|
|
continue;
|
|
}
|
|
chNum = (k / 8) * 3 + (k % 8) % 3;
|
|
//Make sure we use 16 and up for the 2nd range to match the chanoffset gap
|
|
if ( chNum >= 12 )
|
|
chNum += 16 - 12;
|
|
opNum = ( k % 8 ) / 3;
|
|
blah = (Bitu)( (unsigned long) ( &(chan->op[opNum]) ) );
|
|
OpOffsetTable[k] = (Bit16u)(ChanOffsetTable[ chNum ] + blah);
|
|
}
|
|
#if 0
|
|
//Stupid checks if table's are correct
|
|
for ( k = 0; k < 18; k++ ) {
|
|
Bit32u find = (Bit16u)( &(chip->chan[ k ]) );
|
|
Bitu c;
|
|
for ( c = 0; c < 32; c++ ) {
|
|
if ( ChanOffsetTable[c] == find ) {
|
|
find = 0;
|
|
break;
|
|
}
|
|
}
|
|
if ( find ) {
|
|
find = find;
|
|
}
|
|
}
|
|
for ( k = 0; k < 36; k++ ) {
|
|
Bit32u find = (Bit16u)( &(chip->chan[ k / 2 ].op[k % 2]) );
|
|
Bitu c;
|
|
for ( c = 0; c < 64; c++ ) {
|
|
if ( OpOffsetTable[c] == find ) {
|
|
find = 0;
|
|
break;
|
|
}
|
|
}
|
|
if ( find ) {
|
|
find = find;
|
|
}
|
|
}
|
|
#endif
|
|
doneTables = 1;
|
|
}
|
|
|
|
/*Bit32u Handler::WriteAddr( Bit32u port, Bit8u val ) {
|
|
return chip.WriteAddr( port, val );
|
|
|
|
}
|
|
void Handler::WriteReg( Bit32u addr, Bit8u val ) {
|
|
chip.WriteReg( addr, val );
|
|
}
|
|
|
|
void Handler::Generate( MixerChannel* chan, Bitu samples ) {
|
|
Bit32s buffer[ 512 * 2 ];
|
|
if ( samples > 512 )
|
|
samples = 512;
|
|
if ( !chip.opl3Active ) {
|
|
chip.GenerateBlock2( samples, buffer );
|
|
chan->AddSamples_m32( samples, buffer );
|
|
} else {
|
|
chip.GenerateBlock3( samples, buffer );
|
|
chan->AddSamples_s32( samples, buffer );
|
|
}
|
|
}
|
|
|
|
void Handler::Init( Bitu rate ) {
|
|
InitTables();
|
|
chip.Setup( rate );
|
|
}*/
|