Cog/Frameworks/Dumb/dumb/src/it/readokt.c
2017-10-08 18:48:02 -07:00

605 lines
18 KiB
C

/* _______ ____ __ ___ ___
* \ _ \ \ / \ / \ \ / / ' ' '
* | | \ \ | | || | \/ | . .
* | | | | | | || ||\ /| |
* | | | | | | || || \/ | | ' ' '
* | | | | | | || || | | . .
* | |_/ / \ \__// || | |
* /_______/ynamic \____/niversal /__\ /____\usic /| . . ibliotheque
* / \
* / . \
* readokt.c - Code to read an Oktalyzer module / / \ \
* from an open file. | < / \_
* | \/ /\ /
* By Christopher Snowhill. \_ / > /
* | \ / /
* | ' /
* \__/
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "dumb.h"
#include "internal/it.h"
static int it_okt_read_pattern(IT_PATTERN *pattern, const unsigned char *data,
int length, int n_channels) {
int pos;
int channel;
int row;
int n_rows;
IT_ENTRY *entry;
if (length < 2)
return -1;
n_rows = (data[0] << 8) | data[1];
if (!n_rows)
n_rows = 64;
if (length < 2 + (n_rows * n_channels * 4))
return -1;
pattern->n_rows = n_rows;
/* compute number of entries */
pattern->n_entries = n_rows; /* Account for the row end markers */
pos = 2;
for (row = 0; row < pattern->n_rows; row++) {
for (channel = 0; channel < n_channels; channel++) {
if (data[pos + 0] | data[pos + 2])
pattern->n_entries++;
pos += 4;
}
}
pattern->entry =
(IT_ENTRY *)malloc(pattern->n_entries * sizeof(*pattern->entry));
if (!pattern->entry)
return -1;
entry = pattern->entry;
pos = 2;
for (row = 0; row < n_rows; row++) {
for (channel = 0; channel < n_channels; channel++) {
if (data[pos + 0] | data[pos + 2]) {
entry->channel = channel;
entry->mask = 0;
if (data[pos + 0] > 0 && data[pos + 0] <= 36) {
entry->mask |= IT_ENTRY_NOTE | IT_ENTRY_INSTRUMENT;
entry->note = data[pos + 0] + 35;
entry->instrument = data[pos + 1] + 1;
}
entry->effect = 0;
entry->effectvalue = data[pos + 3];
switch (data[pos + 2]) {
case 2:
if (data[pos + 3])
entry->effect = IT_PORTAMENTO_DOWN;
break; // XXX code calls this rs_portu, but it's adding to
// the period, which decreases the pitch
case 13:
if (data[pos + 3])
entry->effect = IT_OKT_NOTE_SLIDE_DOWN;
break;
case 21:
if (data[pos + 3])
entry->effect = IT_OKT_NOTE_SLIDE_DOWN_ROW;
break;
case 1:
if (data[pos + 3])
entry->effect = IT_PORTAMENTO_UP;
break; // XXX same deal here, increasing the pitch
case 17:
if (data[pos + 3])
entry->effect = IT_OKT_NOTE_SLIDE_UP;
break;
case 30:
if (data[pos + 3])
entry->effect = IT_OKT_NOTE_SLIDE_UP_ROW;
break;
case 10:
if (data[pos + 3])
entry->effect = IT_OKT_ARPEGGIO_3;
break;
case 11:
if (data[pos + 3])
entry->effect = IT_OKT_ARPEGGIO_4;
break;
case 12:
if (data[pos + 3])
entry->effect = IT_OKT_ARPEGGIO_5;
break;
case 15:
entry->effect = IT_S;
entry->effectvalue =
EFFECT_VALUE(IT_S_SET_FILTER, data[pos + 3] & 0x0F);
break;
case 25:
entry->effect = IT_JUMP_TO_ORDER;
break;
case 27:
entry->note = IT_NOTE_OFF;
entry->mask |= IT_ENTRY_NOTE;
break;
case 28:
entry->effect = IT_SET_SPEED;
break;
case 31:
if (data[pos + 3] <= 0x40)
entry->effect = IT_SET_CHANNEL_VOLUME;
else if (data[pos + 3] <= 0x50) {
entry->effect = IT_OKT_VOLUME_SLIDE_DOWN;
entry->effectvalue = data[pos + 3] - 0x40;
} else if (data[pos + 3] <= 0x60) {
entry->effect = IT_OKT_VOLUME_SLIDE_UP;
entry->effectvalue = data[pos + 3] - 0x50;
} else if (data[pos + 3] <= 0x70) {
entry->effect = IT_OKT_VOLUME_SLIDE_DOWN;
entry->effectvalue = data[pos + 3] - 0x50;
} else if (data[pos + 3] <= 0x80) {
entry->effect = IT_OKT_VOLUME_SLIDE_UP;
entry->effectvalue = data[pos + 3] - 0x60;
}
break;
}
if (entry->effect)
entry->mask |= IT_ENTRY_EFFECT;
entry++;
}
pos += 4;
}
IT_SET_END_ROW(entry);
entry++;
}
return 0;
}
static void it_okt_read_sample_header(IT_SAMPLE *sample,
const unsigned char *data) {
int loop_start, loop_length;
memcpy(sample->name, data, 20);
sample->name[20] = 0;
sample->filename[0] = 0;
sample->length =
(data[20] << 24) | (data[21] << 16) | (data[22] << 8) | data[23];
sample->global_volume = 64;
sample->default_volume = data[29];
loop_start = ((data[24] << 8) | data[25]) << 1;
loop_length = ((data[26] << 8) | data[27]) << 1;
sample->sus_loop_start = loop_start;
sample->sus_loop_end = loop_start + loop_length;
if (sample->length <= 0) {
sample->flags = 0;
return;
}
sample->flags = IT_SAMPLE_EXISTS;
sample->default_pan = 0;
sample->C5_speed =
(int)(AMIGA_CLOCK /
214.0); //(long)(16726.0*pow(DUMB_PITCH_BASE, finetune*32));
sample->finetune = 0;
if (sample->sus_loop_end > sample->length)
sample->sus_loop_end = sample->length;
if (loop_length > 2)
sample->flags |= IT_SAMPLE_SUS_LOOP;
sample->vibrato_speed = 0;
sample->vibrato_depth = 0;
sample->vibrato_rate = 0;
sample->vibrato_waveform = 0; // do we have to set _all_ these?
sample->max_resampling_quality = -1;
}
static int it_okt_read_sample_data(IT_SAMPLE *sample, const char *data,
int length) {
if (length && sample->length) {
if (length < sample->length) {
sample->length = length;
if (length < sample->sus_loop_end)
sample->sus_loop_end = length;
}
sample->data = malloc(length);
if (!sample->data)
return -1;
memcpy(sample->data, data, length);
}
return 0;
}
typedef struct IFF_CHUNK IFF_CHUNK;
typedef struct IFF_CHUNKED IFF_CHUNKED;
struct IFF_CHUNK {
unsigned type;
unsigned char *data;
unsigned size;
};
struct IFF_CHUNKED {
unsigned chunk_count;
IFF_CHUNK *chunks;
};
static IFF_CHUNKED *dumbfile_read_okt(DUMBFILE *f) {
IFF_CHUNKED *mod = (IFF_CHUNKED *)malloc(sizeof(*mod));
if (!mod)
return NULL;
mod->chunk_count = 0;
mod->chunks = 0;
for (;;) {
long bytes_read;
IFF_CHUNK *chunk = (IFF_CHUNK *)realloc(
mod->chunks, (mod->chunk_count + 1) * sizeof(IFF_CHUNK));
if (!chunk) {
if (mod->chunks)
free(mod->chunks);
free(mod);
return NULL;
}
mod->chunks = chunk;
chunk += mod->chunk_count;
bytes_read = dumbfile_mgetl(f);
if (bytes_read < 0)
break;
chunk->type = (unsigned int)bytes_read;
chunk->size = (unsigned int)dumbfile_mgetl(f);
if (dumbfile_error(f))
break;
chunk->data = (unsigned char *)malloc(chunk->size);
if (!chunk->data) {
free(mod->chunks);
free(mod);
return NULL;
}
bytes_read = dumbfile_getnc((char *)chunk->data, chunk->size, f);
if (bytes_read < chunk->size) {
if (bytes_read <= 0) {
free(chunk->data);
break;
} else {
chunk->size = (unsigned int)bytes_read;
mod->chunk_count++;
break;
}
}
mod->chunk_count++;
}
if (!mod->chunk_count) {
if (mod->chunks)
free(mod->chunks);
free(mod);
mod = NULL;
}
return mod;
}
void free_okt(IFF_CHUNKED *mod) {
unsigned i;
if (mod) {
if (mod->chunks) {
for (i = 0; i < mod->chunk_count; i++) {
if (mod->chunks[i].data)
free(mod->chunks[i].data);
}
free(mod->chunks);
}
free(mod);
}
}
const IFF_CHUNK *get_chunk_by_type(IFF_CHUNKED *mod, unsigned type,
unsigned offset) {
unsigned i;
if (mod) {
if (mod->chunks) {
for (i = 0; i < mod->chunk_count; i++) {
if (mod->chunks[i].type == type) {
if (!offset)
return &mod->chunks[i];
else
offset--;
}
}
}
}
return NULL;
}
unsigned get_chunk_count(IFF_CHUNKED *mod, unsigned type) {
unsigned i, count = 0;
if (mod) {
if (mod->chunks) {
for (i = 0; i < mod->chunk_count; i++) {
if (mod->chunks[i].type == type)
count++;
}
}
}
return count;
}
static DUMB_IT_SIGDATA *it_okt_load_sigdata(DUMBFILE *f) {
DUMB_IT_SIGDATA *sigdata;
int n_channels;
int i, j, k, l;
IFF_CHUNKED *mod;
const IFF_CHUNK *chunk;
char signature[8];
if (dumbfile_getnc(signature, 8, f) < 8 ||
memcmp(signature, "OKTASONG", 8)) {
return NULL;
}
mod = dumbfile_read_okt(f);
if (!mod)
return NULL;
sigdata = (DUMB_IT_SIGDATA *)malloc(sizeof(*sigdata));
if (!sigdata) {
free_okt(mod);
return NULL;
}
sigdata->name[0] = 0;
chunk = get_chunk_by_type(mod, DUMB_ID('S', 'P', 'E', 'E'), 0);
if (!chunk || chunk->size < 2) {
free(sigdata);
free_okt(mod);
return NULL;
}
sigdata->speed = (chunk->data[0] << 8) | chunk->data[1];
chunk = get_chunk_by_type(mod, DUMB_ID('S', 'A', 'M', 'P'), 0);
if (!chunk || chunk->size < 32) {
free(sigdata);
free_okt(mod);
return NULL;
}
sigdata->n_samples = chunk->size / 32;
chunk = get_chunk_by_type(mod, DUMB_ID('C', 'M', 'O', 'D'), 0);
if (!chunk || chunk->size < 8) {
free(sigdata);
free_okt(mod);
return NULL;
}
n_channels = 0;
for (i = 0; i < 4; i++) {
j = (chunk->data[i * 2] << 8) | chunk->data[i * 2 + 1];
if (!j)
n_channels++;
else if (j == 1)
n_channels += 2;
}
if (!n_channels) {
free(sigdata);
free_okt(mod);
return NULL;
}
sigdata->n_pchannels = n_channels;
sigdata->sample =
(IT_SAMPLE *)malloc(sigdata->n_samples * sizeof(*sigdata->sample));
if (!sigdata->sample) {
free(sigdata);
free_okt(mod);
return NULL;
}
sigdata->song_message = NULL;
sigdata->order = NULL;
sigdata->instrument = NULL;
sigdata->pattern = NULL;
sigdata->midi = NULL;
sigdata->checkpoint = NULL;
sigdata->n_instruments = 0;
for (i = 0; i < sigdata->n_samples; i++)
sigdata->sample[i].data = NULL;
chunk = get_chunk_by_type(mod, DUMB_ID('S', 'A', 'M', 'P'), 0);
for (i = 0; i < sigdata->n_samples; i++) {
it_okt_read_sample_header(&sigdata->sample[i], chunk->data + 32 * i);
}
sigdata->restart_position = 0;
chunk = get_chunk_by_type(mod, DUMB_ID('P', 'L', 'E', 'N'), 0);
if (!chunk || chunk->size < 2) {
_dumb_it_unload_sigdata(sigdata);
free_okt(mod);
return NULL;
}
sigdata->n_orders = (chunk->data[0] << 8) | chunk->data[1];
// what if this is > 128?
if (sigdata->n_orders <= 0 || sigdata->n_orders > 128) {
_dumb_it_unload_sigdata(sigdata);
free_okt(mod);
return NULL;
}
chunk = get_chunk_by_type(mod, DUMB_ID('P', 'A', 'T', 'T'), 0);
if (!chunk || chunk->size < (unsigned)sigdata->n_orders) {
_dumb_it_unload_sigdata(sigdata);
free_okt(mod);
return NULL;
}
sigdata->order = (unsigned char *)malloc(sigdata->n_orders);
if (!sigdata->order) {
_dumb_it_unload_sigdata(sigdata);
free_okt(mod);
return NULL;
}
memcpy(sigdata->order, chunk->data, sigdata->n_orders);
/* Work out how many patterns there are. */
chunk = get_chunk_by_type(mod, DUMB_ID('S', 'L', 'E', 'N'), 0);
if (!chunk || chunk->size < 2) {
_dumb_it_unload_sigdata(sigdata);
free_okt(mod);
return NULL;
}
sigdata->n_patterns = (chunk->data[0] << 8) | chunk->data[1];
j = get_chunk_count(mod, DUMB_ID('P', 'B', 'O', 'D'));
if (sigdata->n_patterns > j)
sigdata->n_patterns = j;
if (!sigdata->n_patterns) {
_dumb_it_unload_sigdata(sigdata);
free_okt(mod);
return NULL;
}
sigdata->pattern =
(IT_PATTERN *)malloc(sigdata->n_patterns * sizeof(*sigdata->pattern));
if (!sigdata->pattern) {
_dumb_it_unload_sigdata(sigdata);
free_okt(mod);
return NULL;
}
for (i = 0; i < sigdata->n_patterns; i++)
sigdata->pattern[i].entry = NULL;
/* Read in the patterns */
for (i = 0; i < sigdata->n_patterns; i++) {
chunk = get_chunk_by_type(mod, DUMB_ID('P', 'B', 'O', 'D'), i);
if (it_okt_read_pattern(&sigdata->pattern[i], chunk->data, chunk->size,
n_channels) != 0) {
_dumb_it_unload_sigdata(sigdata);
free_okt(mod);
return NULL;
}
}
/* And finally, the sample data */
k = get_chunk_count(mod, DUMB_ID('S', 'B', 'O', 'D'));
for (i = 0, j = 0; i < sigdata->n_samples && j < k; i++) {
if (sigdata->sample[i].flags & IT_SAMPLE_EXISTS) {
chunk = get_chunk_by_type(mod, DUMB_ID('S', 'B', 'O', 'D'), j);
if (it_okt_read_sample_data(&sigdata->sample[i],
(const char *)chunk->data,
chunk->size)) {
_dumb_it_unload_sigdata(sigdata);
free_okt(mod);
return NULL;
}
j++;
}
}
for (; i < sigdata->n_samples; i++) {
sigdata->sample[i].flags = 0;
}
chunk = get_chunk_by_type(mod, DUMB_ID('C', 'M', 'O', 'D'), 0);
for (i = 0, j = 0; i < n_channels && j < 4; j++) {
k = (chunk->data[j * 2] << 8) | chunk->data[j * 2 + 1];
l = (j == 1 || j == 2) ? 48 : 16;
if (k == 0) {
sigdata->channel_pan[i++] = l;
} else if (k == 1) {
sigdata->channel_pan[i++] = l;
sigdata->channel_pan[i++] = l;
}
}
free_okt(mod);
/* Now let's initialise the remaining variables, and we're done! */
sigdata->flags = IT_WAS_AN_OKT | IT_WAS_AN_XM | IT_WAS_A_MOD |
IT_OLD_EFFECTS | IT_COMPATIBLE_GXX | IT_STEREO;
sigdata->global_volume = 128;
sigdata->mixing_volume = 48;
/* We want 50 ticks per second; 50/6 row advances per second;
* 50*10=500 row advances per minute; 500/4=125 beats per minute.
*/
sigdata->tempo = 125;
sigdata->pan_separation = 128;
memset(sigdata->channel_volume, 64, DUMB_IT_N_CHANNELS);
memset(sigdata->channel_pan + n_channels, 32,
DUMB_IT_N_CHANNELS - n_channels);
if (_dumb_it_fix_invalid_orders(sigdata) < 0) {
_dumb_it_unload_sigdata(sigdata);
return NULL;
}
return sigdata;
}
DUH *dumb_read_okt_quick(DUMBFILE *f) {
sigdata_t *sigdata;
DUH_SIGTYPE_DESC *descptr = &_dumb_sigtype_it;
sigdata = it_okt_load_sigdata(f);
if (!sigdata)
return NULL;
{
const char *tag[1][2];
tag[0][0] = "FORMAT";
tag[0][1] = "Oktalyzer";
return make_duh(-1, 1, (const char *const(*)[2])tag, 1, &descptr,
&sigdata);
}
}