Cog/Frameworks/OpenMPT/OpenMPT/soundlib/Load_med.cpp
Christopher Snowhill 7e3112efc0 Updated libOpenMPT to version 0.7.12
Signed-off-by: Christopher Snowhill <kode54@gmail.com>
2024-12-04 23:14:47 -08:00

1559 lines
47 KiB
C++

/*
* Load_med.cpp
* ------------
* Purpose: OctaMED / MED Soundstudio module loader
* Notes : Support for synthesized instruments is still missing.
* Authors: OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "Loaders.h"
#ifdef MPT_WITH_VST
#include "../mptrack/Vstplug.h"
#include "plugins/PluginManager.h"
#endif // MPT_WITH_VST
#include "mpt/io/base.hpp"
#include "mpt/io/io.hpp"
#include "mpt/io/io_span.hpp"
#include "mpt/io/io_stdstream.hpp"
#include <map>
OPENMPT_NAMESPACE_BEGIN
struct MMD0FileHeader
{
char mmd[3]; // "MMD" for the first song in file, "MCN" for the rest
uint8be version; // '0'-'3'
uint32be modLength; // Size of file
uint32be songOffset; // Position in file for the first song
uint16be playerSettings1[2]; // Internal variables for the play routine
uint32be blockArrOffset; // Position in file for blocks (patterns)
uint8be flags;
uint8be reserved1[3];
uint32be sampleArrOffset; // Position in file for samples (should be identical between songs)
uint32be reserved2;
uint32be expDataOffset; // Absolute offset in file for ExpData (0 if not present)
uint32be reserved3;
char playerSettings2[11]; // Internal variables for the play routine
uint8be extraSongs; // Number of songs - 1
};
MPT_BINARY_STRUCT(MMD0FileHeader, 52)
struct MMD0Sample
{
uint16be loopStart;
uint16be loopLength;
uint8be midiChannel;
uint8be midiPreset;
uint8be sampleVolume;
int8be sampleTranspose;
};
MPT_BINARY_STRUCT(MMD0Sample, 8)
// Song header for MMD0/MMD1
struct MMD0Song
{
uint8be sequence[256];
};
MPT_BINARY_STRUCT(MMD0Song, 256)
// Song header for MMD2/MMD3
struct MMD2Song
{
enum Flags3
{
FLAG3_STEREO = 0x01, // Mixing in stereo
FLAG3_FREEPAN = 0x02, // Mixing flag: free pan
};
uint32be playSeqTableOffset;
uint32be sectionTableOffset;
uint32be trackVolsOffset;
uint16be numTracks;
uint16be numPlaySeqs;
uint32be trackPanOffset; // 0: all centered (according to docs, MED Soundstudio uses Amiga hard-panning instead)
uint32be flags3;
uint16be volAdjust; // Volume adjust (%)
uint16be mixChannels; // Mixing channels, 0 means 4
uint8 mixEchoType; // 0 = nothing, 1 = normal, 2 = cross
uint8 mixEchoDepth; // 1 - 6, 0 = default
uint16be mixEchoLength; // Echo length in milliseconds
int8 mixStereoSep; // Stereo separation
char pad0[223];
};
MPT_BINARY_STRUCT(MMD2Song, 256)
// Common song header
struct MMDSong
{
enum Flags
{
FLAG_FILTERON = 0x01, // The hardware audio filter is on
FLAG_JUMPINGON = 0x02, // Mouse pointer jumping on
FLAG_JUMP8TH = 0x04, // Jump every 8th line (not in OctaMED Pro)
FLAG_INSTRSATT = 0x08, // sng+samples indicator (not useful in MMDs)
FLAG_VOLHEX = 0x10, // volumes are HEX
FLAG_STSLIDE = 0x20, // use ST/NT/PT compatible sliding
FLAG_8CHANNEL = 0x40, // this is OctaMED 5-8 channel song
FLAG_SLOWHQ = 0x80, // HQ V2-4 compatibility mode
};
enum Flags2
{
FLAG2_BMASK = 0x1F, // (bits 0-4) BPM beat length (in lines)
FLAG2_BPM = 0x20, // BPM mode on
FLAG2_MIX = 0x80, // Module uses mixing
};
uint16be numBlocks; // Number of blocks in current song
uint16be songLength; // MMD0: Number of sequence numbers in the play sequence list, MMD2: Number of sections
char song[256];
MMD0Song GetMMD0Song() const
{
static_assert(sizeof(MMD0Song) == sizeof(song));
return mpt::bit_cast<MMD0Song>(song);
}
MMD2Song GetMMD2Song() const
{
static_assert(sizeof(MMD2Song) == sizeof(song));
return mpt::bit_cast<MMD2Song>(song);
}
uint16be defaultTempo;
int8be playTranspose; // The global play transpose value for current song
uint8be flags;
uint8be flags2;
uint8be tempo2; // Timing pulses per line (ticks)
uint8be trackVol[16]; // 1...64 in MMD0/MMD1, reserved in MMD2
uint8be masterVol; // 1...64
uint8be numSamples;
};
MPT_BINARY_STRUCT(MMDSong, 284)
struct MMD2PlaySeq
{
char name[32];
uint32be commandTableOffset;
uint32be reserved;
uint16be length; // Number of entries
};
MPT_BINARY_STRUCT(MMD2PlaySeq, 42)
struct MMD0PatternHeader
{
uint8be numTracks;
uint8be numRows;
};
MPT_BINARY_STRUCT(MMD0PatternHeader, 2)
struct MMD1PatternHeader
{
uint16be numTracks;
uint16be numRows;
uint32be blockInfoOffset;
};
MPT_BINARY_STRUCT(MMD1PatternHeader, 8)
struct MMDPlaySeqCommand
{
enum Command
{
kStop = 1,
kJump = 2,
};
uint16be offset; // Offset within current play sequence, 0xFFFF = end of list
uint8be command; // Stop = 1, Jump = 2
uint8be extraSize;
};
MPT_BINARY_STRUCT(MMDPlaySeqCommand, 4)
struct MMDBlockInfo
{
uint32be highlightMaskOffset;
uint32be nameOffset;
uint32be nameLength;
uint32be pageTableOffset; // File offset of command page table
uint32be cmdExtTableOffset; // File offset of command extension table (second parameter)
uint32be reserved[4];
};
MPT_BINARY_STRUCT(MMDBlockInfo, 36)
struct MMDInstrHeader
{
enum Types
{
VSTI = -4,
HIGHLIFE = -3,
HYBRID = -2,
SYNTHETIC = -1,
SAMPLE = 0, // an ordinary 1-octave sample (or MIDI)
IFF5OCT = 1, // 5 octaves
IFF3OCT = 2, // 3 octaves
// The following ones are recognized by OctaMED Pro only
IFF2OCT = 3, // 2 octaves
IFF4OCT = 4, // 4 octaves
IFF6OCT = 5, // 6 octaves
IFF7OCT = 6, // 7 octaves
// OctaMED Pro V5 + later
EXTSAMPLE = 7, // two extra-low octaves
TYPEMASK = 0x0F,
S_16 = 0x10,
STEREO = 0x20,
DELTA = 0x40,
PACKED = 0x80, // MMDPackedSampleHeader follows
OBSOLETE_MD16 = 0x18,
};
uint32be length;
int16be type;
};
MPT_BINARY_STRUCT(MMDInstrHeader, 6)
struct MMDPackedSampleHeader
{
uint16be packType; // Only 1 = ADPCM is supported
uint16be subType; // Packing subtype
// ADPCM subtype
// 1: g723_40
// 2: g721
// 3: g723_24
uint8be commonFlags; // flags common to all packtypes (none defined so far)
uint8be packerFlags; // flags for the specific packtype
uint32be leftChLen; // packed length of left channel in bytes
uint32be rightChLen; // packed length of right channel in bytes (ONLY PRESENT IN STEREO SAMPLES)
};
MPT_BINARY_STRUCT(MMDPackedSampleHeader, 14)
struct MMDInstrExt
{
enum
{
SSFLG_LOOP = 0x01, // Loop On / Off
SSFLG_EXTPSET = 0x02, // Ext.Preset
SSFLG_DISABLED = 0x04, // Disabled
SSFLG_PINGPONG = 0x08, // Ping-pong looping
};
uint8be hold; // 0...127
uint8be decay; // 0...127
uint8be suppressMidiOff;
int8be finetune;
// Below fields saved by >= V5
uint8be defaultPitch;
uint8be instrFlags;
uint16be longMidiPreset; // Legacy MIDI program mode that doesn't use banks but a combination of two program change commands
// Below fields saved by >= V5.02
uint8be outputDevice;
uint8be reserved;
// Below fields saved by >= V7
uint32be loopStart;
uint32be loopLength;
// Not sure which version starts saving those but they are saved by MED Soundstudio for Windows
uint8 volume; // 0...127
uint8 outputPort; // Index into user-configurable device list (NOT WinAPI port index)
uint16le midiBank;
};
MPT_BINARY_STRUCT(MMDInstrExt, 22)
struct MMDInstrInfo
{
char name[40];
};
MPT_BINARY_STRUCT(MMDInstrInfo, 40)
struct MMD0Exp
{
uint32be nextModOffset;
uint32be instrExtOffset;
uint16be instrExtEntries;
uint16be instrExtEntrySize;
uint32be annoText;
uint32be annoLength;
uint32be instrInfoOffset;
uint16be instrInfoEntries;
uint16be instrInfoEntrySize;
uint32be jumpMask;
uint32be rgbTable;
uint8be channelSplit[4];
uint32be notationInfoOffset;
uint32be songNameOffset;
uint32be songNameLength;
uint32be midiDumpOffset;
uint32be mmdInfoOffset;
uint32be arexxOffset;
uint32be midiCmd3xOffset;
uint32be trackInfoOffset; // Pointer to song->numtracks pointers to tag lists
uint32be effectInfoOffset; // Pointers to group pointers
uint32be tagEnd;
};
MPT_BINARY_STRUCT(MMD0Exp, 80)
struct MMDTag
{
enum TagType
{
// Generic MMD tags
MMDTAG_END = 0x00000000,
MMDTAG_PTR = 0x80000000, // Data needs relocation
MMDTAG_MUSTKNOW = 0x40000000, // Loader must fail if this isn't recognized
MMDTAG_MUSTWARN = 0x20000000, // Loader must warn if this isn't recognized
MMDTAG_MASK = 0x1FFFFFFF,
// ExpData tags
// # of effect groups, including the global group (will override settings in MMDSong struct), default = 1
MMDTAG_EXP_NUMFXGROUPS = 1,
MMDTAG_TRK_FXGROUP = 3,
MMDTAG_TRK_NAME = 1, // trackinfo tags
MMDTAG_TRK_NAMELEN = 2, // namelen includes zero term.
// effectinfo tags
MMDTAG_FX_ECHOTYPE = 1,
MMDTAG_FX_ECHOLEN = 2,
MMDTAG_FX_ECHODEPTH = 3,
MMDTAG_FX_STEREOSEP = 4,
MMDTAG_FX_GROUPNAME = 5, // the Global Effects group shouldn't have name saved!
MMDTAG_FX_GRPNAMELEN = 6, // namelen includes zero term.
};
uint32be type;
uint32be data;
};
MPT_BINARY_STRUCT(MMDTag, 8)
struct MMDDump
{
uint32be length;
uint32be dataPointer;
uint16be extLength; // If >= 20: name follows as char[20]
};
MPT_BINARY_STRUCT(MMDDump, 10)
static TEMPO MMDTempoToBPM(uint32 tempo, bool is8Ch, bool softwareMixing, bool bpmMode, uint8 rowsPerBeat)
{
if(bpmMode && !is8Ch)
{
// You would have thought that we could use modern tempo mode here.
// Alas, the number of ticks per row still influences the tempo. :(
return TEMPO((tempo * rowsPerBeat) / 4.0);
}
if(is8Ch && tempo > 0)
{
LimitMax(tempo, 10u);
// MED Soundstudio uses these tempos when importing old files
static constexpr uint8 tempos[10] = {179, 164, 152, 141, 131, 123, 116, 110, 104, 99};
return TEMPO(tempos[tempo - 1], 0);
} else if(!softwareMixing && tempo > 0 && tempo <= 10)
{
// SoundTracker compatible tempo
return TEMPO((6.0 * 1773447.0 / 14500.0) / tempo);
} else if(softwareMixing && tempo < 8)
{
// Observed in MED SoundStudio 1.03 with 1-64ch mixing mode and SPD tempo mode (bug?)
return TEMPO(157.86);
}
return TEMPO(tempo / 0.264);
}
struct TranslateMEDPatternContext
{
const int16 transpose;
const CHANNELINDEX numTracks;
const uint8 version;
const uint8 rowsPerBeat;
const bool is8Ch : 1;
const bool softwareMixing : 1;
const bool bpmMode : 1;
const bool volHex : 1;
const bool vol7bit : 1;
};
static std::pair<EffectCommand, ModCommand::PARAM> ConvertMEDEffect(ModCommand &m, const uint8 command, const uint8 param, const uint8 param2, const TranslateMEDPatternContext ctx)
{
const uint8 nibbleLo = std::min(param, uint8(0x0F));
switch(command)
{
case 0x01: // Portamento Up (avoid effect memory when importing as XM)
if(param)
m.SetEffectCommand(CMD_PORTAMENTOUP, param);
break;
case 0x02: // Portamento Down (avoid effect memory when importing as XM)
if(param)
m.SetEffectCommand(CMD_PORTAMENTODOWN, param);
break;
case 0x04: // Vibrato (twice as deep as in ProTracker)
m.SetEffectCommand(CMD_VIBRATO, (param & 0xF0) | std::min<uint8>((param & 0x0F) * 2, 0x0F));
break;
case 0x05: // Tone Porta + Volume Slide (avoid effect memory when importing as XM)
if(param)
m.SetEffectCommand(CMD_TONEPORTAVOL, param);
else
m.SetEffectCommand(CMD_TONEPORTAMENTO, 0);
break;
case 0x06: // Vibrato + Volume Slide (avoid effect memory when importing as XM)
if(param)
m.SetEffectCommand(CMD_VIBRATOVOL, param);
else
m.SetEffectCommand(CMD_VIBRATO, 0);
break;
case 0x08: // Hold and decay
break;
case 0x09: // Set secondary speed
if(param > 0 && param <= 0x20)
m.SetEffectCommand(CMD_SPEED, param);
break;
case 0x0C: // Set Volume (note: parameters >= 0x80 (only in hex mode?) should set the default instrument volume, which we don't support)
if(!ctx.volHex && param < 0x99)
m.SetEffectCommand(CMD_VOLUME, static_cast<ModCommand::PARAM>((param >> 4) * 10 + (param & 0x0F)));
else if(ctx.volHex && !ctx.vol7bit)
m.SetEffectCommand(CMD_VOLUME, static_cast<ModCommand::PARAM>(std::min(param & 0x7F, 64)));
else if(ctx.volHex)
m.SetEffectCommand(CMD_VOLUME, static_cast<ModCommand::PARAM>(((param & 0x7F) + 1) / 2));
break;
case 0x0D:
if(param)
m.SetEffectCommand(CMD_VOLUMESLIDE, param);
break;
case 0x0E: // Synth jump
m.command = CMD_NONE;
break;
case 0x0F: // Misc
if(param == 0)
{
m.SetEffectCommand(CMD_PATTERNBREAK, param);
} else if(param <= 0xF0)
{
m.command = CMD_TEMPO;
if(param < 0x03)
{
// This appears to be a bug in OctaMED which is not emulated in MED Soundstudio on Windows.
m.param = 0x70;
} else
{
uint16 tempo = mpt::saturate_round<uint16>(MMDTempoToBPM(param, ctx.is8Ch, ctx.softwareMixing, ctx.bpmMode, ctx.rowsPerBeat).ToDouble());
if(tempo <= Util::MaxValueOfType(m.param))
{
m.param = static_cast<ModCommand::PARAM>(tempo);
} else
{
m.param = static_cast<ModCommand::PARAM>(tempo >> 8);
return {CMD_XPARAM, static_cast<ModCommand::PARAM>(tempo & 0xFF)};
}
}
} else switch(param)
{
case 0xF1: // Play note twice
m.SetEffectCommand(CMD_MODCMDEX, 0x93);
break;
case 0xF2: // Delay note
m.SetEffectCommand(CMD_MODCMDEX, 0xD3);
break;
case 0xF3: // Play note three times
m.SetEffectCommand(CMD_MODCMDEX, 0x92);
break;
case 0xF8: // Turn filter off
case 0xF9: // Turn filter on
m.SetEffectCommand(CMD_MODCMDEX, 0xF9 - param);
break;
case 0xFA: // MIDI pedal on
case 0xFB: // MIDI pedal off
case 0xFD: // Set pitch
case 0xFE: // End of song
break;
case 0xFF: // Turn note off
m.note = NOTE_NOTECUT;
break;
}
break;
case 0x10: // MIDI message
m.SetEffectCommand(CMD_MIDI, 0x80 | param);
break;
case 0x11: // Slide pitch up
m.SetEffectCommand(CMD_MODCMDEX, 0x10 | nibbleLo);
break;
case 0x12: // Slide pitch down
m.SetEffectCommand(CMD_MODCMDEX, 0x20 | nibbleLo);
break;
case 0x14: // Vibrato (ProTracker compatible depth, but faster)
m.SetEffectCommand(CMD_VIBRATO, param);
break;
case 0x15: // Set finetune
m.SetEffectCommand(CMD_MODCMDEX, 0x50 | (param & 0x0F));
break;
case 0x16: // Loop
m.SetEffectCommand(CMD_MODCMDEX, 0x60 | nibbleLo);
break;
case 0x18: // Stop note
m.SetEffectCommand(CMD_MODCMDEX, 0xC0 | nibbleLo);
break;
case 0x19: // Sample Offset
m.SetEffectCommand(CMD_OFFSET, param);
break;
case 0x1A: // Slide volume up once
m.SetEffectCommand(CMD_MODCMDEX, 0xA0 | nibbleLo);
break;
case 0x1B: // Slide volume down once
m.SetEffectCommand(CMD_MODCMDEX, 0xB0 | nibbleLo);
break;
case 0x1C: // MIDI program
if(param > 0 && param <= 128)
m.SetEffectCommand(CMD_MIDI, param - 1);
break;
case 0x1D: // Pattern break (in hex)
m.SetEffectCommand(CMD_PATTERNBREAK, param);
break;
case 0x1E: // Repeat row
m.SetEffectCommand(CMD_MODCMDEX, 0xE0 | std::min<uint8>(param, 0x0F));
break;
case 0x1F: // Note delay and retrigger
{
if(param & 0xF0)
m.SetEffectCommand(CMD_MODCMDEX, 0xD0 | (param >> 4));
else if(param & 0x0F)
m.SetEffectCommand(CMD_MODCMDEX, 0x90 | param);
break;
}
case 0x20: // Reverse sample + skip samples
if(param == 0 && param2 == 0)
{
if(m.IsNote())
{
m.SetEffectCommand(CMD_XFINEPORTAUPDOWN, 0x9F);
}
} else
{
// Skip given number of samples
}
break;
case 0x29: // Relative sample offset
if(param2 > 0)
m.SetEffectCommand(CMD_OFFSETPERCENTAGE, mpt::saturate_cast<ModCommand::PARAM>(Util::muldiv_unsigned(param, 0x100, param2)));
break;
case 0x2E: // Set panning
if(param <= 0x10 || param >= 0xF0)
m.SetEffectCommand(CMD_PANNING8, mpt::saturate_cast<ModCommand::PARAM>(((param ^ 0x80) - 0x70) * 8));
break;
default:
if((command > 0 || param) && command < 0x10)
CSoundFile::ConvertModCommand(m, command, param);
break;
}
return std::make_pair(CMD_NONE, ModCommand::PARAM(0));
}
static bool TranslateMEDPattern(FileReader &file, FileReader &cmdExt, CPattern &pattern, const TranslateMEDPatternContext ctx, const bool isExtraPage)
{
bool needInstruments = false;
for(ROWINDEX row = 0; row < pattern.GetNumRows(); row++)
{
ModCommand *m = pattern.GetpModCommand(row, 0);
for(CHANNELINDEX chn = 0; chn < ctx.numTracks; chn++, m++)
{
auto oldCmd = std::make_pair(m->command, m->param);
int note = NOTE_NONE;
uint8 cmd = 0, param1 = 0, param2 = 0;
if(ctx.version < 1)
{
const auto [noteInstr, instrCmd, param] = file.ReadArray<uint8, 3>();
if(noteInstr & 0x3F)
note = (noteInstr & 0x3F) + ctx.transpose;
m->instr = (instrCmd >> 4) | ((noteInstr & 0x80) >> 3) | ((noteInstr & 0x40) >> 1);
cmd = instrCmd & 0x0F;
param1 = param;
} else if(isExtraPage)
{
const auto [command, param] = file.ReadArray<uint8, 2>();
param2 = cmdExt.ReadUint8();
cmd = command;
param1 = param;
} else
{
const auto [noteVal, instr, command, param] = file.ReadArray<uint8, 4>();
param2 = cmdExt.ReadUint8();
if(noteVal & 0x7F)
note = (noteVal & 0x7F) + ctx.transpose;
else if(noteVal == 0x80)
m->note = NOTE_NOTECUT;
if(instr & 0x3F)
m->instr = instr & 0x3F;
cmd = command;
param1 = param;
}
// Octave wrapping for 4-channel modules
if(note >= NOTE_MIDDLEC + 2 * 12)
needInstruments = true;
if(note >= NOTE_MIN && note <= NOTE_MAX)
m->note = static_cast<ModCommand::NOTE>(note);
if(!cmd && !param1)
continue;
const auto extraCmd = ConvertMEDEffect(*m, cmd, param1, param2, ctx);
if(oldCmd.first != CMD_NONE && m->command != oldCmd.first)
{
if(!ModCommand::CombineEffects(m->command, m->param, oldCmd.first, oldCmd.second) && m->volcmd == VOLCMD_NONE)
m->FillInTwoCommands(m->command, m->param, oldCmd.first, oldCmd.second, true);
// Reset X-Param to 8-bit value if this cell was overwritten with a "useful" effect
if(row > 0 && oldCmd.first == CMD_XPARAM && m->command != CMD_XPARAM)
pattern.GetpModCommand(row - 1, chn)->param = Util::MaxValueOfType(m->param);
}
if(extraCmd.first != CMD_NONE)
{
if(row < (pattern.GetNumRows() - 1))
pattern.GetpModCommand(row + 1, chn)->SetEffectCommand(extraCmd);
else
m->param = Util::MaxValueOfType(m->param); // No space :(
}
}
}
return needInstruments;
}
#ifdef MPT_WITH_VST
static std::wstring ReadMEDStringUTF16BE(FileReader &file)
{
FileReader chunk = file.ReadChunk(file.ReadUint32BE());
std::wstring s(chunk.GetLength() / 2u, L'\0');
for(auto &c : s)
{
c = chunk.ReadUint16BE();
}
return s;
}
#endif // MPT_WITH_VST
static void MEDReadNextSong(FileReader &file, MMD0FileHeader &fileHeader, MMD0Exp &expData, MMDSong &songHeader)
{
file.ReadStruct(fileHeader);
file.Seek(fileHeader.songOffset + 63 * sizeof(MMD0Sample));
file.ReadStruct(songHeader);
if(fileHeader.expDataOffset && file.Seek(fileHeader.expDataOffset))
file.ReadStruct(expData);
else
expData = {};
}
static std::pair<CHANNELINDEX, SEQUENCEINDEX> MEDScanNumChannels(FileReader &file, const uint8 version)
{
MMD0FileHeader fileHeader;
MMD0Exp expData;
MMDSong songHeader;
file.Rewind();
uint32 songOffset = 0;
MEDReadNextSong(file, fileHeader, expData, songHeader);
SEQUENCEINDEX numSongs = std::min(MAX_SEQUENCES, mpt::saturate_cast<SEQUENCEINDEX>(fileHeader.expDataOffset ? fileHeader.extraSongs + 1 : 1));
CHANNELINDEX numChannels = 4;
// Scan patterns for max number of channels
for(SEQUENCEINDEX song = 0; song < numSongs; song++)
{
const PATTERNINDEX numPatterns = songHeader.numBlocks;
if(songHeader.numSamples > 63 || numPatterns > 0x7FFF)
return {};
for(PATTERNINDEX pat = 0; pat < numPatterns; pat++)
{
if(!file.Seek(fileHeader.blockArrOffset + pat * 4u)
|| !file.Seek(file.ReadUint32BE()))
{
continue;
}
numChannels = std::max(numChannels, static_cast<CHANNELINDEX>(version < 1 ? file.ReadUint8() : file.ReadUint16BE()));
}
// If song offsets are going backwards, reject the file
if(expData.nextModOffset <= songOffset || !file.Seek(expData.nextModOffset))
{
numSongs = song + 1;
break;
}
songOffset = expData.nextModOffset;
MEDReadNextSong(file, fileHeader, expData, songHeader);
}
return {numChannels, numSongs};
}
static bool ValidateHeader(const MMD0FileHeader &fileHeader)
{
if(std::memcmp(fileHeader.mmd, "MMD", 3)
|| fileHeader.version < '0' || fileHeader.version > '3'
|| fileHeader.songOffset < sizeof(MMD0FileHeader)
|| fileHeader.songOffset > uint32_max - 63 * sizeof(MMD0Sample) - sizeof(MMDSong)
|| fileHeader.blockArrOffset < sizeof(MMD0FileHeader)
|| (fileHeader.sampleArrOffset > 0 && fileHeader.sampleArrOffset < sizeof(MMD0FileHeader))
|| fileHeader.expDataOffset > uint32_max - sizeof(MMD0Exp))
{
return false;
}
return true;
}
static uint64 GetHeaderMinimumAdditionalSize(const MMD0FileHeader &fileHeader)
{
return std::max<uint64>({ fileHeader.songOffset + 63 * sizeof(MMD0Sample) + sizeof(MMDSong),
fileHeader.blockArrOffset,
fileHeader.sampleArrOffset ? fileHeader.sampleArrOffset : sizeof(MMD0FileHeader),
fileHeader.expDataOffset + sizeof(MMD0Exp) }) - sizeof(MMD0FileHeader);
}
CSoundFile::ProbeResult CSoundFile::ProbeFileHeaderMED(MemoryFileReader file, const uint64 *pfilesize)
{
MMD0FileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
return ProbeWantMoreData;
if(!ValidateHeader(fileHeader))
return ProbeFailure;
return ProbeAdditionalSize(file, pfilesize, GetHeaderMinimumAdditionalSize(fileHeader));
}
bool CSoundFile::ReadMED(FileReader &file, ModLoadingFlags loadFlags)
{
file.Rewind();
MMD0FileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
return false;
if(!ValidateHeader(fileHeader))
return false;
if(!file.CanRead(mpt::saturate_cast<FileReader::off_t>(GetHeaderMinimumAdditionalSize(fileHeader))))
return false;
if(loadFlags == onlyVerifyHeader)
return true;
InitializeGlobals(MOD_TYPE_MED);
InitializeChannels();
const uint8 version = fileHeader.version - '0';
file.Seek(fileHeader.songOffset);
FileReader sampleHeaderChunk = file.ReadChunk(63 * sizeof(MMD0Sample));
MMDSong songHeader;
file.ReadStruct(songHeader);
if(songHeader.numSamples > 63 || songHeader.numBlocks > 0x7FFF)
return false;
MMD0Exp expData{};
if(fileHeader.expDataOffset && file.Seek(fileHeader.expDataOffset))
{
file.ReadStruct(expData);
}
const auto [numChannels, numSongs] = MEDScanNumChannels(file, version);
if(numChannels < 1 || numChannels > MAX_BASECHANNELS)
return false;
m_nChannels = numChannels;
// Start with the instruments, as those are shared between songs
std::vector<uint32be> instrOffsets;
if(fileHeader.sampleArrOffset)
{
file.Seek(fileHeader.sampleArrOffset);
file.ReadVector(instrOffsets, songHeader.numSamples);
} else if(songHeader.numSamples > 0)
{
return false;
}
m_nInstruments = m_nSamples = songHeader.numSamples;
// In MMD0 / MMD1, octave wrapping is not done for synth instruments
// - It's required e.g. for automatic terminated to.mmd0 and you got to let the music.mmd1
// - starkelsesirap.mmd0 (synth instruments) on the other hand don't need it
// In MMD2 / MMD3, the mix flag is used instead.
const bool hardwareMixSamples = (version < 2) || (version >= 2 && !(songHeader.flags2 & MMDSong::FLAG2_MIX));
m_nMinPeriod = hardwareMixSamples ? (113 * 4) : (55 * 4);
bool needInstruments = false;
bool anySynthInstrs = false;
#ifndef NO_PLUGINS
PLUGINDEX numPlugins = 0;
#endif // !NO_PLUGINS
for(SAMPLEINDEX ins = 1, smp = 1; ins <= m_nInstruments; ins++)
{
if(!AllocateInstrument(ins, smp))
return false;
ModInstrument &instr = *Instruments[ins];
MMDInstrHeader instrHeader{};
FileReader sampleChunk;
if(instrOffsets[ins - 1] != 0 && file.Seek(instrOffsets[ins - 1]))
{
file.ReadStruct(instrHeader);
uint32 chunkLength = instrHeader.length;
if(instrHeader.type > 0 && (instrHeader.type & MMDInstrHeader::STEREO))
chunkLength *= 2u;
sampleChunk = file.ReadChunk(chunkLength);
}
const bool isSynth = instrHeader.type < 0;
const size_t maskedType = static_cast<size_t>(instrHeader.type & MMDInstrHeader::TYPEMASK);
#ifdef MPT_WITH_VST
if(instrHeader.type == MMDInstrHeader::VSTI)
{
needInstruments = true;
sampleChunk.Skip(6); // 00 00 <size of following data>
const std::wstring type = ReadMEDStringUTF16BE(sampleChunk);
const std::wstring name = ReadMEDStringUTF16BE(sampleChunk);
if(type == L"VST")
{
auto &mixPlug = m_MixPlugins[numPlugins];
mpt::reconstruct(mixPlug);
mixPlug.Info.dwPluginId1 = Vst::kEffectMagic;
mixPlug.Info.gain = 10;
mixPlug.Info.szName = mpt::ToCharset(mpt::Charset::Locale, name);
mixPlug.Info.szLibraryName = mpt::ToCharset(mpt::Charset::UTF8, name);
instr.nMixPlug = numPlugins + 1;
instr.nMidiChannel = MidiFirstChannel;
instr.Transpose(-24);
instr.AssignSample(0);
// TODO: Figure out patch and routing data
numPlugins++;
}
} else
#endif // MPT_WITH_VST
if(isSynth)
{
// TODO: Figure out synth instruments
anySynthInstrs = true;
instr.AssignSample(0);
}
MMD0Sample sampleHeader;
sampleHeaderChunk.ReadStruct(sampleHeader);
uint8 numSamples = 1;
static constexpr uint8 SamplesPerType[] = {1, 5, 3, 2, 4, 6, 7};
if(!isSynth && maskedType < std::size(SamplesPerType))
numSamples = SamplesPerType[maskedType];
if(numSamples > 1)
{
static_assert(MAX_SAMPLES > 63 * 9, "Check IFFOCT multisample code");
m_nSamples += numSamples - 1;
needInstruments = true;
static constexpr uint8 OctSampleMap[][8] =
{
{1, 1, 0, 0, 0, 0, 0, 0}, // 2
{2, 2, 1, 1, 0, 0, 0, 0}, // 3
{3, 3, 2, 2, 1, 0, 0, 0}, // 4
{4, 3, 2, 1, 1, 0, 0, 0}, // 5
{5, 4, 3, 2, 1, 0, 0, 0}, // 6
{6, 5, 4, 3, 2, 1, 0, 0}, // 7
};
static constexpr int8 OctTransposeMap[][8] =
{
{ 0, 0, -12, -12, -24, -36, -48, -60}, // 2
{ 0, 0, -12, -12, -24, -36, -48, -60}, // 3
{ 0, 0, -12, -12, -24, -36, -48, -60}, // 4
{12, 0, -12, -24, -24, -36, -48, -60}, // 5
{12, 0, -12, -24, -36, -48, -48, -60}, // 6
{12, 0, -12, -24, -36, -48, -60, -72}, // 7
};
// TODO: Move octaves so that they align better (C-4 = lowest, we don't have access to the highest four octaves)
for(int octave = 4; octave < 10; octave++)
{
for(int note = 0, i = 12 * octave; note < 12; note++, i++)
{
instr.Keyboard[i] = smp + OctSampleMap[numSamples - 2][octave - 4];
instr.NoteMap[i] = static_cast<uint8>(instr.NoteMap[i] + OctTransposeMap[numSamples - 2][octave - 4]);
}
}
} else if(maskedType == MMDInstrHeader::EXTSAMPLE)
{
needInstruments = true;
instr.Transpose(-24);
} else if(!isSynth && (hardwareMixSamples || sampleHeader.sampleTranspose))
{
int offset = NOTE_MIDDLEC + (hardwareMixSamples ? 24 : 36);
for(auto &note : instr.NoteMap)
{
int realNote = note + sampleHeader.sampleTranspose;
if(realNote >= offset)
note -= static_cast<uint8>(mpt::align_down(realNote - offset + 12, 12));
}
}
// midiChannel = 0xFF == midi instrument but with invalid channel, midiChannel = 0x00 == sample-based instrument?
if(sampleHeader.midiChannel > 0 && sampleHeader.midiChannel <= 16)
{
instr.nMidiChannel = sampleHeader.midiChannel - 1 + MidiFirstChannel;
needInstruments = true;
#ifdef MPT_WITH_VST
if(!isSynth)
{
auto &mixPlug = m_MixPlugins[numPlugins];
mpt::reconstruct(mixPlug);
mixPlug.Info.dwPluginId1 = PLUGMAGIC('V', 's', 't', 'P');
mixPlug.Info.dwPluginId2 = PLUGMAGIC('M', 'M', 'I', 'D');
mixPlug.Info.gain = 10;
mixPlug.Info.szName = "MIDI Input Output";
mixPlug.Info.szLibraryName = "MIDI Input Output";
instr.nMixPlug = numPlugins + 1;
instr.Transpose(-24);
numPlugins++;
}
#endif // MPT_WITH_VST
}
if(sampleHeader.midiPreset > 0 && sampleHeader.midiPreset <= 128)
{
instr.nMidiProgram = sampleHeader.midiPreset;
}
for(SAMPLEINDEX i = 0; i < numSamples; i++)
{
ModSample &mptSmp = Samples[smp + i];
mptSmp.Initialize(MOD_TYPE_MED);
mptSmp.nVolume = 4u * std::min<uint8>(sampleHeader.sampleVolume, 64u);
mptSmp.RelativeTone = sampleHeader.sampleTranspose;
}
if(isSynth || !(loadFlags & loadSampleData))
{
smp += numSamples;
continue;
}
SampleIO sampleIO(
SampleIO::_8bit,
SampleIO::mono,
SampleIO::bigEndian,
SampleIO::signedPCM);
const bool hasLoop = sampleHeader.loopLength > 1;
SmpLength loopStart = sampleHeader.loopStart * 2;
SmpLength loopEnd = loopStart + sampleHeader.loopLength * 2;
SmpLength length = mpt::saturate_cast<SmpLength>(sampleChunk.GetLength());
if(instrHeader.type & MMDInstrHeader::S_16)
{
sampleIO |= SampleIO::_16bit;
length /= 2;
}
if(instrHeader.type & MMDInstrHeader::STEREO)
{
sampleIO |= SampleIO::stereoSplit;
length /= 2;
m_SongFlags.reset(SONG_ISAMIGA); // Amiga resampler does not handle stereo samples
}
if(instrHeader.type & MMDInstrHeader::DELTA)
{
sampleIO |= SampleIO::deltaPCM;
}
if(numSamples > 1)
length = length / ((1u << numSamples) - 1);
for(SAMPLEINDEX i = 0; i < numSamples; i++)
{
ModSample &mptSmp = Samples[smp + i];
mptSmp.nLength = length;
sampleIO.ReadSample(mptSmp, sampleChunk);
if(hasLoop)
{
mptSmp.nLoopStart = loopStart;
mptSmp.nLoopEnd = loopEnd;
mptSmp.uFlags.set(CHN_LOOP);
}
length *= 2;
loopStart *= 2;
loopEnd *= 2;
}
smp += numSamples;
}
if(expData.instrExtOffset != 0 && expData.instrExtEntries != 0 && file.Seek(expData.instrExtOffset))
{
const uint16 entries = std::min<uint16>(expData.instrExtEntries, songHeader.numSamples);
const uint16 size = expData.instrExtEntrySize;
for(uint16 i = 0; i < entries; i++)
{
MMDInstrExt instrExt;
file.ReadStructPartial(instrExt, size);
ModInstrument &ins = *Instruments[i + 1];
if(instrExt.hold)
{
ins.VolEnv.assign({
EnvelopeNode{0u, ENVELOPE_MAX},
EnvelopeNode{static_cast<EnvelopeNode::tick_t>(instrExt.hold - 1), ENVELOPE_MAX},
EnvelopeNode{static_cast<EnvelopeNode::tick_t>(instrExt.hold + (instrExt.decay ? 64u / instrExt.decay : 0u)), ENVELOPE_MIN},
});
if(instrExt.hold == 1)
ins.VolEnv.erase(ins.VolEnv.begin());
ins.nFadeOut = instrExt.decay ? (instrExt.decay * 512) : 32767;
ins.VolEnv.dwFlags.set(ENV_ENABLED);
needInstruments = true;
}
if(size > offsetof(MMDInstrExt, defaultPitch) && instrExt.defaultPitch != 0)
{
ins.NoteMap[24] = instrExt.defaultPitch + NOTE_MIN + 23;
needInstruments = true;
}
if(size > offsetof(MMDInstrExt, volume))
ins.nGlobalVol = (instrExt.volume + 1u) / 2u;
if(size > offsetof(MMDInstrExt, midiBank))
ins.wMidiBank = instrExt.midiBank;
#ifdef MPT_WITH_VST
if(ins.nMixPlug > 0)
{
PLUGINDEX plug = ins.nMixPlug - 1;
auto &mixPlug = m_MixPlugins[plug];
if(mixPlug.Info.dwPluginId2 == PLUGMAGIC('M', 'M', 'I', 'D'))
{
float dev = (instrExt.outputDevice + 1) / 65536.0f; // Magic code from MidiInOut.h :(
mixPlug.pluginData.resize(3 * sizeof(uint32));
auto memFile = std::make_pair(mpt::as_span(mixPlug.pluginData), mpt::IO::Offset(0));
mpt::IO::WriteIntLE<uint32>(memFile, 0); // Plugin data type
mpt::IO::Write(memFile, IEEE754binary32LE{0}); // Input device
mpt::IO::Write(memFile, IEEE754binary32LE{dev}); // Output device
// Check if we already have another plugin referencing this output device
for(PLUGINDEX p = 0; p < plug; p++)
{
const auto &otherPlug = m_MixPlugins[p];
if(otherPlug.Info.dwPluginId1 == mixPlug.Info.dwPluginId1
&& otherPlug.Info.dwPluginId2 == mixPlug.Info.dwPluginId2
&& otherPlug.pluginData == mixPlug.pluginData)
{
ins.nMixPlug = p + 1;
mixPlug = {};
break;
}
}
}
}
#endif // MPT_WITH_VST
ModSample &sample = Samples[ins.Keyboard[NOTE_MIDDLEC]];
sample.nFineTune = MOD2XMFineTune(instrExt.finetune);
if(size > offsetof(MMDInstrExt, loopLength))
{
sample.nLoopStart = instrExt.loopStart;
sample.nLoopEnd = instrExt.loopStart + instrExt.loopLength;
}
if(size > offsetof(MMDInstrExt, instrFlags))
{
sample.uFlags.set(CHN_LOOP, (instrExt.instrFlags & MMDInstrExt::SSFLG_LOOP) != 0);
sample.uFlags.set(CHN_PINGPONGLOOP, (instrExt.instrFlags & MMDInstrExt::SSFLG_PINGPONG) != 0);
if(instrExt.instrFlags & MMDInstrExt::SSFLG_DISABLED)
sample.nGlobalVol = 0;
}
}
}
if(expData.instrInfoOffset != 0 && expData.instrInfoEntries != 0 && file.Seek(expData.instrInfoOffset))
{
const uint16 entries = std::min<uint16>(expData.instrInfoEntries, songHeader.numSamples);
const uint16 size = expData.instrInfoEntrySize;
for(uint16 i = 0; i < entries; i++)
{
MMDInstrInfo instrInfo;
file.ReadStructPartial(instrInfo, size);
Instruments[i + 1]->name = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, instrInfo.name);
for(auto smp : Instruments[i + 1]->GetSamples())
{
m_szNames[smp] = Instruments[i + 1]->name;
}
}
}
// Setup a program change macro for command 1C (even if MIDI plugin is disabled, as otherwise these commands may act as filter commands)
m_MidiCfg.ClearZxxMacros();
m_MidiCfg.SFx[0] = "Cc z";
file.Rewind();
PATTERNINDEX basePattern = 0;
for(SEQUENCEINDEX song = 0; song < numSongs; song++)
{
MEDReadNextSong(file, fileHeader, expData, songHeader);
if(song != 0)
{
if(Order.AddSequence() == SEQUENCEINDEX_INVALID)
return false;
}
ModSequence &order = Order(song);
std::map<ORDERINDEX, ORDERINDEX> jumpTargets;
order.clear();
uint32 preamp = 32;
if(version < 2)
{
if(songHeader.songLength > 256)
return false;
ReadOrderFromArray(order, songHeader.GetMMD0Song().sequence, songHeader.songLength);
for(auto &ord : order)
{
ord += basePattern;
}
SetupMODPanning(true);
// With MED SoundStudio 1.03 it's possible to create MMD1 files with more than 16 channels.
const CHANNELINDEX numChannelVols = std::min(m_nChannels, CHANNELINDEX(16));
for(CHANNELINDEX chn = 0; chn < numChannelVols; chn++)
{
ChnSettings[chn].nVolume = std::min<uint8>(songHeader.trackVol[chn], 64);
}
} else
{
const MMD2Song header = songHeader.GetMMD2Song();
if(header.numTracks < 1 || header.numTracks > 64 || m_nChannels > 64)
return false;
const bool freePan = !hardwareMixSamples && (header.flags3 & MMD2Song::FLAG3_FREEPAN);
if(header.volAdjust)
preamp = Util::muldivr_unsigned(preamp, std::min<uint16>(header.volAdjust, 800), 100);
if (freePan)
preamp /= 2;
if(file.Seek(header.trackVolsOffset))
{
for(CHANNELINDEX chn = 0; chn < m_nChannels; chn++)
{
ChnSettings[chn].nVolume = std::min<uint8>(file.ReadUint8(), 64);
}
}
if((freePan || version > 2) && header.trackPanOffset && file.Seek(header.trackPanOffset))
{
for(CHANNELINDEX chn = 0; chn < m_nChannels; chn++)
{
ChnSettings[chn].nPan = (Clamp<int8, int8>(file.ReadInt8(), -16, 16) + 16) * 8;
}
} else
{
SetupMODPanning(true);
}
#ifndef NO_PLUGINS
if((header.mixEchoType == 1 || header.mixEchoType == 2) && numPlugins < MAX_MIXPLUGINS)
{
// Emulating MED echo using the DMO echo requires to compensate for the differences in initial feedback in the latter.
const float feedback = 1.0f / (1 << std::clamp(header.mixEchoDepth, uint8(1), uint8(9))); // The feedback we want
const float initialFeedback = std::sqrt(1.0f - (feedback * feedback)); // Actual strength of first delay's feedback
const float wetFactor = feedback / initialFeedback; // Factor to compensate for this
const float delay = (std::max(header.mixEchoLength.get(), uint16(1)) - 1) / 1999.0f;
SNDMIXPLUGIN &mixPlug = m_MixPlugins[numPlugins];
mpt::reconstruct(mixPlug);
memcpy(&mixPlug.Info.dwPluginId1, "OMXD", 4);
memcpy(&mixPlug.Info.dwPluginId2, "\x2C\x93\x3E\xEF", 4);
mixPlug.Info.routingFlags = SNDMIXPLUGININFO::irApplyToMaster | SNDMIXPLUGININFO::irAutoSuspend;
mixPlug.fDryRatio = 1.0f - wetFactor / (wetFactor + 1.0f);
mixPlug.Info.gain = 10;
mixPlug.Info.szName = "Echo";
mixPlug.Info.szLibraryName = "Echo";
std::array<float32le, 6> params{};
params[1] = 1.0f; // WetDryMix
params[2] = feedback; // Feedback
params[3] = delay; // LeftDelay
params[4] = delay; // RightDelay
params[5] = header.mixEchoType - 1.0f; // PanDelay
mixPlug.pluginData.resize(sizeof(params));
memcpy(mixPlug.pluginData.data(), params.data(), sizeof(params));
}
#endif
std::vector<uint16be> sections;
if(!file.Seek(header.sectionTableOffset)
|| !file.CanRead(songHeader.songLength * 2)
|| !file.ReadVector(sections, songHeader.songLength))
continue;
for(uint16 section : sections)
{
if(section > header.numPlaySeqs)
continue;
file.Seek(header.playSeqTableOffset + section * 4);
if(!file.Seek(file.ReadUint32BE()) || !file.CanRead(sizeof(MMD2PlaySeq)))
continue;
MMD2PlaySeq playSeq;
file.ReadStruct(playSeq);
if(!order.empty())
order.push_back(order.GetIgnoreIndex());
const size_t orderStart = order.size();
size_t readOrders = playSeq.length;
if(!file.CanRead(readOrders))
LimitMax(readOrders, file.BytesLeft());
LimitMax(readOrders, ORDERINDEX_MAX);
order.reserve(orderStart + readOrders);
for(size_t ord = 0; ord < readOrders; ord++)
{
PATTERNINDEX pat = file.ReadUint16BE();
if(pat < 0x8000)
{
order.push_back(basePattern + pat);
}
}
if(playSeq.name[0])
order.SetName(mpt::ToUnicode(mpt::Charset::Amiga_no_C1, mpt::String::ReadAutoBuf(playSeq.name)));
// Play commands (jump / stop)
if(playSeq.commandTableOffset > 0 && file.Seek(playSeq.commandTableOffset))
{
MMDPlaySeqCommand command;
while(file.ReadStruct(command))
{
FileReader chunk = file.ReadChunk(command.extraSize);
ORDERINDEX ord = mpt::saturate_cast<ORDERINDEX>(orderStart + command.offset);
if(command.offset == 0xFFFF || ord >= order.size())
break;
if(command.command == MMDPlaySeqCommand::kStop)
{
order[ord] = order.GetInvalidPatIndex();
} else if(command.command == MMDPlaySeqCommand::kJump)
{
jumpTargets[ord] = chunk.ReadUint16BE();
order[ord] = order.GetIgnoreIndex();
}
}
}
}
}
const bool volHex = (songHeader.flags & MMDSong::FLAG_VOLHEX) != 0;
const bool is8Ch = (songHeader.flags & MMDSong::FLAG_8CHANNEL) != 0;
const bool bpmMode = (songHeader.flags2 & MMDSong::FLAG2_BPM) != 0;
const bool softwareMixing = (songHeader.flags2 & MMDSong::FLAG2_MIX) != 0;
const uint8 rowsPerBeat = 1 + (songHeader.flags2 & MMDSong::FLAG2_BMASK);
if(song == 0)
{
m_nDefaultTempo = MMDTempoToBPM(songHeader.defaultTempo, is8Ch, softwareMixing, bpmMode, rowsPerBeat);
m_nDefaultSpeed = Clamp<uint8, uint8>(songHeader.tempo2, 1, 32);
if(bpmMode)
{
m_nDefaultRowsPerBeat = rowsPerBeat;
m_nDefaultRowsPerMeasure = m_nDefaultRowsPerBeat * 4u;
}
}
if(songHeader.masterVol)
m_nDefaultGlobalVolume = std::min<uint8>(songHeader.masterVol, 64) * 4;
m_nSamplePreAmp = m_nVSTiVolume = preamp;
// For MED, this affects both volume and pitch slides
m_SongFlags.set(SONG_FASTVOLSLIDES, !(songHeader.flags & MMDSong::FLAG_STSLIDE));
m_playBehaviour.set(kST3OffsetWithoutInstrument);
m_playBehaviour.set(kST3PortaSampleChange);
m_playBehaviour.set(kFT2PortaNoNote);
if(expData.songNameOffset && file.Seek(expData.songNameOffset))
{
file.ReadString<mpt::String::maybeNullTerminated>(m_songName, expData.songNameLength);
if(numSongs > 1)
order.SetName(mpt::ToUnicode(mpt::Charset::Amiga_no_C1, m_songName));
}
if(expData.annoLength > 1 && file.Seek(expData.annoText))
{
m_songMessage.Read(file, expData.annoLength - 1, SongMessage::leAutodetect);
}
#ifdef MPT_WITH_VST
// Read MIDI messages
if(expData.midiDumpOffset && file.Seek(expData.midiDumpOffset) && file.CanRead(8))
{
uint16 numDumps = std::min(file.ReadUint16BE(), static_cast<uint16>(m_MidiCfg.Zxx.size()));
file.Skip(6);
if(file.CanRead(numDumps * 4))
{
std::vector<uint32be> dumpPointers;
file.ReadVector(dumpPointers, numDumps);
for(uint16 dump = 0; dump < numDumps; dump++)
{
if(!file.Seek(dumpPointers[dump]) || !file.CanRead(sizeof(MMDDump)))
continue;
MMDDump dumpHeader;
file.ReadStruct(dumpHeader);
if(!file.Seek(dumpHeader.dataPointer) || !file.CanRead(dumpHeader.length))
continue;
std::array<char, kMacroLength> macro{};
auto length = std::min(static_cast<size_t>(dumpHeader.length), macro.size() / 2u);
for(size_t i = 0; i < length; i++)
{
const uint8 byte = file.ReadUint8(), high = byte >> 4, low = byte & 0x0F;
macro[i * 2] = high + (high < 0x0A ? '0' : 'A' - 0x0A);
macro[i * 2 + 1] = low + (low < 0x0A ? '0' : 'A' - 0x0A);
}
m_MidiCfg.Zxx[dump] = std::string_view{macro.data(), length * 2};
}
}
}
#endif // MPT_WITH_VST
if(expData.mmdInfoOffset && file.Seek(expData.mmdInfoOffset) && file.CanRead(12))
{
file.Skip(6); // Next info file (unused) + reserved
if(file.ReadUint16BE() == 1) // ASCII text
{
uint32 length = file.ReadUint32BE();
if(length && file.CanRead(length))
{
const auto oldMsg = std::move(m_songMessage);
m_songMessage.Read(file, length, SongMessage::leAutodetect);
if(!oldMsg.empty())
m_songMessage.SetRaw(oldMsg + std::string(2, SongMessage::InternalLineEnding) + m_songMessage);
}
}
}
// Track Names
if(version >= 2 && expData.trackInfoOffset)
{
for(CHANNELINDEX chn = 0; chn < m_nChannels; chn++)
{
if(file.Seek(expData.trackInfoOffset + chn * 4)
&& file.Seek(file.ReadUint32BE()))
{
uint32 nameOffset = 0, nameLength = 0;
while(file.CanRead(sizeof(MMDTag)))
{
MMDTag tag;
file.ReadStruct(tag);
if(tag.type == MMDTag::MMDTAG_END)
break;
switch(tag.type & MMDTag::MMDTAG_MASK)
{
case MMDTag::MMDTAG_TRK_NAME: nameOffset = tag.data; break;
case MMDTag::MMDTAG_TRK_NAMELEN: nameLength = tag.data; break;
}
}
if(nameOffset > 0 && nameLength > 0 && file.Seek(nameOffset))
{
file.ReadString<mpt::String::maybeNullTerminated>(ChnSettings[chn].szName, nameLength);
}
}
}
}
PATTERNINDEX numPatterns = songHeader.numBlocks;
LimitMax(numPatterns, static_cast<PATTERNINDEX>(PATTERNINDEX_INVALID - basePattern));
Patterns.ResizeArray(basePattern + numPatterns);
for(PATTERNINDEX pat = 0; pat < numPatterns; pat++)
{
if(!(loadFlags & loadPatternData)
|| !file.Seek(fileHeader.blockArrOffset + pat * 4u)
|| !file.Seek(file.ReadUint32BE()))
{
continue;
}
CHANNELINDEX numTracks;
ROWINDEX numRows;
std::string patName;
int16 transpose = NOTE_MIN + 47 + songHeader.playTranspose;
uint16 numPages = 0;
FileReader cmdExt, commandPages;
bool vol7bit = false;
if(version < 1)
{
MMD0PatternHeader patHeader;
file.ReadStruct(patHeader);
numTracks = patHeader.numTracks;
numRows = patHeader.numRows + 1;
} else
{
if(version > 2)
transpose -= 24;
MMD1PatternHeader patHeader;
file.ReadStruct(patHeader);
numTracks = patHeader.numTracks;
numRows = patHeader.numRows + 1;
if(patHeader.blockInfoOffset)
{
auto offset = file.GetPosition();
file.Seek(patHeader.blockInfoOffset);
MMDBlockInfo blockInfo;
file.ReadStruct(blockInfo);
if(blockInfo.nameLength
&& blockInfo.nameOffset
&& file.Seek(blockInfo.nameOffset))
{
// We have now chased four pointers to get this far... lovely format.
file.ReadString<mpt::String::maybeNullTerminated>(patName, blockInfo.nameLength);
}
if(blockInfo.pageTableOffset
&& file.Seek(blockInfo.pageTableOffset)
&& file.CanRead(8))
{
numPages = file.ReadUint16BE();
file.Skip(2);
commandPages = file.ReadChunk(4 * numPages);
}
if(blockInfo.cmdExtTableOffset
&& file.Seek(blockInfo.cmdExtTableOffset)
&& file.Seek(file.ReadUint32BE()))
{
vol7bit = true;
cmdExt = file.ReadChunk(numTracks * numRows * (1 + numPages));
}
file.Seek(offset);
}
}
if(!Patterns.Insert(basePattern + pat, numRows))
continue;
CPattern &pattern = Patterns[basePattern + pat];
pattern.SetName(patName);
LimitMax(numTracks, m_nChannels);
TranslateMEDPatternContext context{transpose, numTracks, version, rowsPerBeat, is8Ch, softwareMixing, bpmMode, volHex, vol7bit};
needInstruments |= TranslateMEDPattern(file, cmdExt, pattern, context, false);
for(uint16 page = 0; page < numPages; page++)
{
const uint32 pageOffset = commandPages.ReadUint32BE();
if(!pageOffset || !file.Seek(pageOffset))
continue;
TranslateMEDPattern(file, cmdExt, pattern, context, true);
}
}
// Fix jump order commands
for(const auto &[from, to] : jumpTargets)
{
PATTERNINDEX pat;
if(from > 0 && order.IsValidPat(from - 1))
{
pat = order.EnsureUnique(from - 1);
} else
{
if(to == from + 1) // No action required
continue;
pat = Patterns.InsertAny(1);
if(pat == PATTERNINDEX_INVALID)
continue;
order[from] = pat;
}
Patterns[pat].WriteEffect(EffectWriter(CMD_POSITIONJUMP, mpt::saturate_cast<ModCommand::PARAM>(to)).Row(Patterns[pat].GetNumRows() - 1).RetryPreviousRow());
if(pat >= basePattern && (pat - basePattern) >= numPatterns)
numPatterns = static_cast<PATTERNINDEX>(pat - basePattern + 1);
}
if(numSongs > 1)
{
PATTERNINDEX firstPat = order.EnsureUnique(order.GetFirstValidIndex());
if(firstPat != PATTERNINDEX_INVALID)
{
for(CHANNELINDEX chn = 0; chn < m_nChannels; chn++)
{
Patterns[firstPat].WriteEffect(EffectWriter(CMD_CHANNELVOLUME, static_cast<ModCommand::PARAM>(ChnSettings[chn].nVolume)).Channel(chn).RetryNextRow());
Patterns[firstPat].WriteEffect(EffectWriter(CMD_PANNING8, mpt::saturate_cast<ModCommand::PARAM>(ChnSettings[chn].nPan)).Channel(chn).RetryNextRow());
}
if(firstPat >= basePattern && (firstPat - basePattern) >= numPatterns)
numPatterns = static_cast<PATTERNINDEX>(firstPat - basePattern + 1);
}
}
basePattern += numPatterns;
if(!expData.nextModOffset || !file.Seek(expData.nextModOffset))
break;
}
Order.SetSequence(0);
if(!needInstruments)
{
for(INSTRUMENTINDEX ins = 1; ins <= m_nInstruments; ins++)
{
delete Instruments[ins];
Instruments[ins] = nullptr;
}
m_nInstruments = 0;
}
if(anySynthInstrs)
AddToLog(LogWarning, U_("Synthesized MED instruments are not supported."));
const mpt::uchar *madeWithTracker = MPT_ULITERAL("");
switch(version)
{
case 0: madeWithTracker = m_nChannels > 4 ? MPT_ULITERAL("OctaMED v2.10 (MMD0)") : MPT_ULITERAL("MED v2 (MMD0)"); break;
case 1: madeWithTracker = MPT_ULITERAL("OctaMED v4 (MMD1)"); break;
case 2: madeWithTracker = MPT_ULITERAL("OctaMED v5 (MMD2)"); break;
case 3: madeWithTracker = MPT_ULITERAL("OctaMED Soundstudio (MMD3)"); break;
}
m_modFormat.formatName = MPT_UFORMAT("OctaMED (MMD{})")(version);
m_modFormat.type = MPT_USTRING("med");
m_modFormat.madeWithTracker = madeWithTracker;
m_modFormat.charset = mpt::Charset::Amiga_no_C1;
return true;
}
OPENMPT_NAMESPACE_END