Cog/Frameworks/OpenMPT/OpenMPT/soundlib/TinyFFT.cpp
Christopher Snowhill da1973bcd9 Build libOpenMPT from source once again
Bundle libOpenMPT as a dynamic framework, which should be safe once
again, now that there is only one version to bundle. Also, now it is
using the versions of libvorbisfile and libmpg123 that are bundled with
the player, instead of compiling minimp3 and stbvorbis.

Signed-off-by: Christopher Snowhill <kode54@gmail.com>
2022-06-30 22:56:52 -07:00

154 lines
3.3 KiB
C++

/*
* TinyFFT.cpp
* -----------
* Purpose: A simple FFT implementation for power-of-two FFTs
* Notes : This is a C++ adaption of Ryuhei Mori's BSD 2-clause licensed TinyFFT
* available from https://github.com/ryuhei-mori/tinyfft
* Authors: Ryuhei Mori
* OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "TinyFFT.h"
OPENMPT_NAMESPACE_BEGIN
void TinyFFT::GenerateTwiddleFactors(uint32 i, uint32 b, std::complex<double> z)
{
if(b == 0)
w[i] = z;
else
{
GenerateTwiddleFactors(i, b >> 1, z);
GenerateTwiddleFactors(i | b, b >> 1, z * w[b]);
}
}
TinyFFT::TinyFFT(const uint32 fftSize)
: w(std::size_t(1) << (fftSize - 1))
, k(fftSize)
{
const uint32 m = 1 << k;
constexpr double PI2_ = 6.28318530717958647692;
const double arg = -PI2_ / m;
for(uint32 i = 1, j = m / 4; j; i <<= 1, j >>= 1)
{
w[i] = std::exp(I * (arg * j));
}
GenerateTwiddleFactors(0, m / 4, 1);
}
uint32 TinyFFT::Size() const noexcept
{
return 1 << k;
}
// Computes in-place FFT of size 2^k of A, result is in bit-reversed order.
void TinyFFT::FFT(std::vector<std::complex<double>> &A) const
{
MPT_ASSERT(A.size() == (std::size_t(1) << k));
const uint32 m = 1 << k;
uint32 u = 1;
uint32 v = m / 4;
if(k & 1)
{
for(uint32 j = 0; j < m / 2; j++)
{
auto Ajv = A[j + (m / 2)];
A[j + (m / 2)] = A[j] - Ajv;
A[j] += Ajv;
}
u <<= 1;
v >>= 1;
}
for(uint32 i = k & ~1; i > 0; i -= 2)
{
for(uint32 jh = 0; jh < u; jh++)
{
auto wj = w[jh << 1];
auto wj2 = w[jh];
auto wj3 = wj2 * wj;
for(uint32 j = jh << i, je = j + v; j < je; j++)
{
auto tmp0 = A[j];
auto tmp1 = wj * A[j + v];
auto tmp2 = wj2 * A[j + 2 * v];
auto tmp3 = wj3 * A[j + 3 * v];
auto ttmp0 = tmp0 + tmp2;
auto ttmp2 = tmp0 - tmp2;
auto ttmp1 = tmp1 + tmp3;
auto ttmp3 = -I * (tmp1 - tmp3);
A[j] = ttmp0 + ttmp1;
A[j + v] = ttmp0 - ttmp1;
A[j + 2 * v] = ttmp2 + ttmp3;
A[j + 3 * v] = ttmp2 - ttmp3;
}
}
u <<= 2;
v >>= 2;
}
}
// Computes in-place IFFT of size 2^k of A, input is expected to be in bit-reversed order.
void TinyFFT::IFFT(std::vector<std::complex<double>> &A) const
{
MPT_ASSERT(A.size() == (std::size_t(1) << k));
const uint32 m = 1 << k;
uint32 u = m / 4;
uint32 v = 1;
for(uint32 i = 2; i <= k; i += 2)
{
for(uint32 jh = 0; jh < u; jh++)
{
auto wj = std::conj(w[jh << 1]);
auto wj2 = std::conj(w[jh]);
auto wj3 = wj2 * wj;
for(uint32 j = jh << i, je = j + v; j < je; j++)
{
auto tmp0 = A[j];
auto tmp1 = A[j + v];
auto tmp2 = A[j + 2 * v];
auto tmp3 = A[j + 3 * v];
auto ttmp0 = tmp0 + tmp1;
auto ttmp1 = tmp0 - tmp1;
auto ttmp2 = tmp2 + tmp3;
auto ttmp3 = I * (tmp2 - tmp3);
A[j] = ttmp0 + ttmp2;
A[j + v] = wj * (ttmp1 + ttmp3);
A[j + 2 * v] = wj2 * (ttmp0 - ttmp2);
A[j + 3 * v] = wj3 * (ttmp1 - ttmp3);
}
}
u >>= 2;
v <<= 2;
}
if(k & 1)
{
for(uint32 j = 0; j < m / 2; j++)
{
auto Ajv = A[j + (m / 2)];
A[j + (m / 2)] = A[j] - Ajv;
A[j] += Ajv;
}
}
}
void TinyFFT::Normalize(std::vector<std::complex<double>> &data)
{
const double s = static_cast<double>(data.size());
for(auto &v : data)
v /= s;
}
OPENMPT_NAMESPACE_END