Cog/Plugins/MIDI/MIDI/fmopl3lib/opl3.cpp
Christopher Snowhill 85c7073649 Reformat my own source code with clang-format
Signed-off-by: Christopher Snowhill <kode54@gmail.com>
2022-02-06 21:49:27 -08:00

1165 lines
33 KiB
C++

//
// Copyright (C) 2013-2016 Alexey Khokholov (Nuke.YKT)
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//
// Nuked OPL3 emulator.
// Thanks:
// MAME Development Team(Jarek Burczynski, Tatsuyuki Satoh):
// Feedback and Rhythm part calculation information.
// forums.submarine.org.uk(carbon14, opl3):
// Tremolo and phase generator calculation information.
// OPLx decapsulated(Matthew Gambrell, Olli Niemitalo):
// OPL2 ROMs.
//
// version: 1.7.1
//
#include "opl3.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// Extended panning mode
#define _USE_MATH_DEFINES
#include <math.h>
#define RSM_FRAC 10
// Channel types
enum {
ch_2op = 0,
ch_4op = 1,
ch_4op2 = 2,
ch_drum = 3
};
// Envelope key types
enum {
egk_norm = 0x01,
egk_drum = 0x02
};
//
// logsin table
//
static const Bit16u logsinrom[256] = {
0x859, 0x6c3, 0x607, 0x58b, 0x52e, 0x4e4, 0x4a6, 0x471,
0x443, 0x41a, 0x3f5, 0x3d3, 0x3b5, 0x398, 0x37e, 0x365,
0x34e, 0x339, 0x324, 0x311, 0x2ff, 0x2ed, 0x2dc, 0x2cd,
0x2bd, 0x2af, 0x2a0, 0x293, 0x286, 0x279, 0x26d, 0x261,
0x256, 0x24b, 0x240, 0x236, 0x22c, 0x222, 0x218, 0x20f,
0x206, 0x1fd, 0x1f5, 0x1ec, 0x1e4, 0x1dc, 0x1d4, 0x1cd,
0x1c5, 0x1be, 0x1b7, 0x1b0, 0x1a9, 0x1a2, 0x19b, 0x195,
0x18f, 0x188, 0x182, 0x17c, 0x177, 0x171, 0x16b, 0x166,
0x160, 0x15b, 0x155, 0x150, 0x14b, 0x146, 0x141, 0x13c,
0x137, 0x133, 0x12e, 0x129, 0x125, 0x121, 0x11c, 0x118,
0x114, 0x10f, 0x10b, 0x107, 0x103, 0x0ff, 0x0fb, 0x0f8,
0x0f4, 0x0f0, 0x0ec, 0x0e9, 0x0e5, 0x0e2, 0x0de, 0x0db,
0x0d7, 0x0d4, 0x0d1, 0x0cd, 0x0ca, 0x0c7, 0x0c4, 0x0c1,
0x0be, 0x0bb, 0x0b8, 0x0b5, 0x0b2, 0x0af, 0x0ac, 0x0a9,
0x0a7, 0x0a4, 0x0a1, 0x09f, 0x09c, 0x099, 0x097, 0x094,
0x092, 0x08f, 0x08d, 0x08a, 0x088, 0x086, 0x083, 0x081,
0x07f, 0x07d, 0x07a, 0x078, 0x076, 0x074, 0x072, 0x070,
0x06e, 0x06c, 0x06a, 0x068, 0x066, 0x064, 0x062, 0x060,
0x05e, 0x05c, 0x05b, 0x059, 0x057, 0x055, 0x053, 0x052,
0x050, 0x04e, 0x04d, 0x04b, 0x04a, 0x048, 0x046, 0x045,
0x043, 0x042, 0x040, 0x03f, 0x03e, 0x03c, 0x03b, 0x039,
0x038, 0x037, 0x035, 0x034, 0x033, 0x031, 0x030, 0x02f,
0x02e, 0x02d, 0x02b, 0x02a, 0x029, 0x028, 0x027, 0x026,
0x025, 0x024, 0x023, 0x022, 0x021, 0x020, 0x01f, 0x01e,
0x01d, 0x01c, 0x01b, 0x01a, 0x019, 0x018, 0x017, 0x017,
0x016, 0x015, 0x014, 0x014, 0x013, 0x012, 0x011, 0x011,
0x010, 0x00f, 0x00f, 0x00e, 0x00d, 0x00d, 0x00c, 0x00c,
0x00b, 0x00a, 0x00a, 0x009, 0x009, 0x008, 0x008, 0x007,
0x007, 0x007, 0x006, 0x006, 0x005, 0x005, 0x005, 0x004,
0x004, 0x004, 0x003, 0x003, 0x003, 0x002, 0x002, 0x002,
0x002, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001,
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000
};
//
// exp table
//
static const Bit16u exprom[256] = {
0x000, 0x003, 0x006, 0x008, 0x00b, 0x00e, 0x011, 0x014,
0x016, 0x019, 0x01c, 0x01f, 0x022, 0x025, 0x028, 0x02a,
0x02d, 0x030, 0x033, 0x036, 0x039, 0x03c, 0x03f, 0x042,
0x045, 0x048, 0x04b, 0x04e, 0x051, 0x054, 0x057, 0x05a,
0x05d, 0x060, 0x063, 0x066, 0x069, 0x06c, 0x06f, 0x072,
0x075, 0x078, 0x07b, 0x07e, 0x082, 0x085, 0x088, 0x08b,
0x08e, 0x091, 0x094, 0x098, 0x09b, 0x09e, 0x0a1, 0x0a4,
0x0a8, 0x0ab, 0x0ae, 0x0b1, 0x0b5, 0x0b8, 0x0bb, 0x0be,
0x0c2, 0x0c5, 0x0c8, 0x0cc, 0x0cf, 0x0d2, 0x0d6, 0x0d9,
0x0dc, 0x0e0, 0x0e3, 0x0e7, 0x0ea, 0x0ed, 0x0f1, 0x0f4,
0x0f8, 0x0fb, 0x0ff, 0x102, 0x106, 0x109, 0x10c, 0x110,
0x114, 0x117, 0x11b, 0x11e, 0x122, 0x125, 0x129, 0x12c,
0x130, 0x134, 0x137, 0x13b, 0x13e, 0x142, 0x146, 0x149,
0x14d, 0x151, 0x154, 0x158, 0x15c, 0x160, 0x163, 0x167,
0x16b, 0x16f, 0x172, 0x176, 0x17a, 0x17e, 0x181, 0x185,
0x189, 0x18d, 0x191, 0x195, 0x199, 0x19c, 0x1a0, 0x1a4,
0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc, 0x1c0, 0x1c4,
0x1c8, 0x1cc, 0x1d0, 0x1d4, 0x1d8, 0x1dc, 0x1e0, 0x1e4,
0x1e8, 0x1ec, 0x1f0, 0x1f5, 0x1f9, 0x1fd, 0x201, 0x205,
0x209, 0x20e, 0x212, 0x216, 0x21a, 0x21e, 0x223, 0x227,
0x22b, 0x230, 0x234, 0x238, 0x23c, 0x241, 0x245, 0x249,
0x24e, 0x252, 0x257, 0x25b, 0x25f, 0x264, 0x268, 0x26d,
0x271, 0x276, 0x27a, 0x27f, 0x283, 0x288, 0x28c, 0x291,
0x295, 0x29a, 0x29e, 0x2a3, 0x2a8, 0x2ac, 0x2b1, 0x2b5,
0x2ba, 0x2bf, 0x2c4, 0x2c8, 0x2cd, 0x2d2, 0x2d6, 0x2db,
0x2e0, 0x2e5, 0x2e9, 0x2ee, 0x2f3, 0x2f8, 0x2fd, 0x302,
0x306, 0x30b, 0x310, 0x315, 0x31a, 0x31f, 0x324, 0x329,
0x32e, 0x333, 0x338, 0x33d, 0x342, 0x347, 0x34c, 0x351,
0x356, 0x35b, 0x360, 0x365, 0x36a, 0x370, 0x375, 0x37a,
0x37f, 0x384, 0x38a, 0x38f, 0x394, 0x399, 0x39f, 0x3a4,
0x3a9, 0x3ae, 0x3b4, 0x3b9, 0x3bf, 0x3c4, 0x3c9, 0x3cf,
0x3d4, 0x3da, 0x3df, 0x3e4, 0x3ea, 0x3ef, 0x3f5, 0x3fa
};
//
// freq mult table multiplied by 2
//
// 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 12, 12, 15, 15
//
static const Bit8u mt[16] = {
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30
};
//
// ksl table
//
static const Bit8u kslrom[16] = {
0, 32, 40, 45, 48, 51, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64
};
static const Bit8u kslshift[4] = {
8, 1, 2, 0
};
//
// envelope generator constants
//
static const Bit8u eg_incstep[3][4][8] = {
{ { 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0 } },
{ { 0, 1, 0, 1, 0, 1, 0, 1 },
{ 0, 1, 0, 1, 1, 1, 0, 1 },
{ 0, 1, 1, 1, 0, 1, 1, 1 },
{ 0, 1, 1, 1, 1, 1, 1, 1 } },
{ { 1, 1, 1, 1, 1, 1, 1, 1 },
{ 2, 2, 1, 1, 1, 1, 1, 1 },
{ 2, 2, 1, 1, 2, 2, 1, 1 },
{ 2, 2, 2, 2, 2, 2, 1, 1 } }
};
static const Bit8u eg_incdesc[16] = {
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
};
static const Bit8s eg_incsh[16] = {
0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, -1, -2
};
//
// address decoding
//
static const Bit8s ad_slot[0x20] = {
0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1,
12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
static const Bit8u ch_slot[18] = {
0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32
};
//
// Envelope generator
//
typedef Bit16s (*envelope_sinfunc)(Bit16u phase, Bit16u envelope);
typedef void (*envelope_genfunc)(opl3_slot *slott);
static Bit16s OPL3_EnvelopeCalcExp(Bit32u level) {
if(level > 0x1fff) {
level = 0x1fff;
}
return ((exprom[(level & 0xff) ^ 0xff] | 0x400) << 1) >> (level >> 8);
}
static Bit16s OPL3_EnvelopeCalcSin0(Bit16u phase, Bit16u envelope) {
Bit16u out = 0;
Bit16u neg = 0;
phase &= 0x3ff;
if(phase & 0x200) {
neg = ~0;
}
if(phase & 0x100) {
out = logsinrom[(phase & 0xff) ^ 0xff];
} else {
out = logsinrom[phase & 0xff];
}
return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg;
}
static Bit16s OPL3_EnvelopeCalcSin1(Bit16u phase, Bit16u envelope) {
Bit16u out = 0;
phase &= 0x3ff;
if(phase & 0x200) {
out = 0x1000;
} else if(phase & 0x100) {
out = logsinrom[(phase & 0xff) ^ 0xff];
} else {
out = logsinrom[phase & 0xff];
}
return OPL3_EnvelopeCalcExp(out + (envelope << 3));
}
static Bit16s OPL3_EnvelopeCalcSin2(Bit16u phase, Bit16u envelope) {
Bit16u out = 0;
phase &= 0x3ff;
if(phase & 0x100) {
out = logsinrom[(phase & 0xff) ^ 0xff];
} else {
out = logsinrom[phase & 0xff];
}
return OPL3_EnvelopeCalcExp(out + (envelope << 3));
}
static Bit16s OPL3_EnvelopeCalcSin3(Bit16u phase, Bit16u envelope) {
Bit16u out = 0;
phase &= 0x3ff;
if(phase & 0x100) {
out = 0x1000;
} else {
out = logsinrom[phase & 0xff];
}
return OPL3_EnvelopeCalcExp(out + (envelope << 3));
}
static Bit16s OPL3_EnvelopeCalcSin4(Bit16u phase, Bit16u envelope) {
Bit16u out = 0;
Bit16u neg = 0;
phase &= 0x3ff;
if((phase & 0x300) == 0x100) {
neg = ~0;
}
if(phase & 0x200) {
out = 0x1000;
} else if(phase & 0x80) {
out = logsinrom[((phase ^ 0xff) << 1) & 0xff];
} else {
out = logsinrom[(phase << 1) & 0xff];
}
return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg;
}
static Bit16s OPL3_EnvelopeCalcSin5(Bit16u phase, Bit16u envelope) {
Bit16u out = 0;
phase &= 0x3ff;
if(phase & 0x200) {
out = 0x1000;
} else if(phase & 0x80) {
out = logsinrom[((phase ^ 0xff) << 1) & 0xff];
} else {
out = logsinrom[(phase << 1) & 0xff];
}
return OPL3_EnvelopeCalcExp(out + (envelope << 3));
}
static Bit16s OPL3_EnvelopeCalcSin6(Bit16u phase, Bit16u envelope) {
Bit16u neg = 0;
phase &= 0x3ff;
if(phase & 0x200) {
neg = ~0;
}
return OPL3_EnvelopeCalcExp(envelope << 3) ^ neg;
}
static Bit16s OPL3_EnvelopeCalcSin7(Bit16u phase, Bit16u envelope) {
Bit16u out = 0;
Bit16u neg = 0;
phase &= 0x3ff;
if(phase & 0x200) {
neg = ~0;
phase = (phase & 0x1ff) ^ 0x1ff;
}
out = phase << 3;
return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg;
}
static const envelope_sinfunc envelope_sin[8] = {
OPL3_EnvelopeCalcSin0,
OPL3_EnvelopeCalcSin1,
OPL3_EnvelopeCalcSin2,
OPL3_EnvelopeCalcSin3,
OPL3_EnvelopeCalcSin4,
OPL3_EnvelopeCalcSin5,
OPL3_EnvelopeCalcSin6,
OPL3_EnvelopeCalcSin7
};
static void OPL3_EnvelopeGenOff(opl3_slot *slot);
static void OPL3_EnvelopeGenAttack(opl3_slot *slot);
static void OPL3_EnvelopeGenDecay(opl3_slot *slot);
static void OPL3_EnvelopeGenSustain(opl3_slot *slot);
static void OPL3_EnvelopeGenRelease(opl3_slot *slot);
envelope_genfunc envelope_gen[5] = {
OPL3_EnvelopeGenOff,
OPL3_EnvelopeGenAttack,
OPL3_EnvelopeGenDecay,
OPL3_EnvelopeGenSustain,
OPL3_EnvelopeGenRelease
};
enum envelope_gen_num {
envelope_gen_num_off = 0,
envelope_gen_num_attack = 1,
envelope_gen_num_decay = 2,
envelope_gen_num_sustain = 3,
envelope_gen_num_release = 4
};
static Bit8u OPL3_EnvelopeCalcRate(opl3_slot *slot, Bit8u reg_rate) {
Bit8u rate;
if(reg_rate == 0x00) {
return 0x00;
}
rate = (reg_rate << 2) + (slot->reg_ksr ? slot->channel->ksv : (slot->channel->ksv >> 2));
if(rate > 0x3c) {
rate = 0x3c;
}
return rate;
}
static void OPL3_EnvelopeUpdateKSL(opl3_slot *slot) {
Bit16s ksl = (kslrom[slot->channel->f_num >> 6] << 2) - ((0x08 - slot->channel->block) << 5);
if(ksl < 0) {
ksl = 0;
}
slot->eg_ksl = (Bit8u)ksl;
}
static void OPL3_EnvelopeUpdateRate(opl3_slot *slot) {
switch(slot->eg_gen) {
case envelope_gen_num_off:
case envelope_gen_num_attack:
slot->eg_rate = OPL3_EnvelopeCalcRate(slot, slot->reg_ar);
break;
case envelope_gen_num_decay:
slot->eg_rate = OPL3_EnvelopeCalcRate(slot, slot->reg_dr);
break;
case envelope_gen_num_sustain:
case envelope_gen_num_release:
slot->eg_rate = OPL3_EnvelopeCalcRate(slot, slot->reg_rr);
break;
}
}
static void OPL3_EnvelopeGenOff(opl3_slot *slot) {
slot->eg_rout = 0x1ff;
}
static void OPL3_EnvelopeGenAttack(opl3_slot *slot) {
if(slot->eg_rout == 0x00) {
slot->eg_gen = envelope_gen_num_decay;
OPL3_EnvelopeUpdateRate(slot);
return;
}
slot->eg_rout += ((~slot->eg_rout) * slot->eg_inc) >> 3;
if(slot->eg_rout < 0x00) {
slot->eg_rout = 0x00;
}
}
static void OPL3_EnvelopeGenDecay(opl3_slot *slot) {
if(slot->eg_rout >= slot->reg_sl << 4) {
slot->eg_gen = envelope_gen_num_sustain;
OPL3_EnvelopeUpdateRate(slot);
return;
}
slot->eg_rout += slot->eg_inc;
}
static void OPL3_EnvelopeGenSustain(opl3_slot *slot) {
if(!slot->reg_type) {
OPL3_EnvelopeGenRelease(slot);
}
}
static void OPL3_EnvelopeGenRelease(opl3_slot *slot) {
if(slot->eg_rout >= 0x1ff) {
slot->eg_gen = envelope_gen_num_off;
slot->eg_rout = 0x1ff;
OPL3_EnvelopeUpdateRate(slot);
return;
}
slot->eg_rout += slot->eg_inc;
}
static void OPL3_EnvelopeCalc(opl3_slot *slot) {
Bit8u rate_h, rate_l;
Bit8u inc = 0;
rate_h = slot->eg_rate >> 2;
rate_l = slot->eg_rate & 3;
if(eg_incsh[rate_h] > 0) {
if((slot->chip->timer & ((1 << eg_incsh[rate_h]) - 1)) == 0) {
inc = eg_incstep[eg_incdesc[rate_h]][rate_l]
[((slot->chip->timer) >> eg_incsh[rate_h]) & 0x07];
}
} else {
inc = eg_incstep[eg_incdesc[rate_h]][rate_l]
[slot->chip->timer & 0x07]
<< (-eg_incsh[rate_h]);
}
slot->eg_inc = inc;
slot->eg_out = slot->eg_rout + (slot->reg_tl << 2) + (slot->eg_ksl >> kslshift[slot->reg_ksl]) + *slot->trem;
envelope_gen[slot->eg_gen](slot);
}
static void OPL3_EnvelopeKeyOn(opl3_slot *slot, Bit8u type) {
if(!slot->key) {
slot->eg_gen = envelope_gen_num_attack;
OPL3_EnvelopeUpdateRate(slot);
if((slot->eg_rate >> 2) == 0x0f) {
slot->eg_gen = envelope_gen_num_decay;
OPL3_EnvelopeUpdateRate(slot);
slot->eg_rout = 0x00;
}
slot->pg_phase = 0x00;
}
slot->key |= type;
}
static void OPL3_EnvelopeKeyOff(opl3_slot *slot, Bit8u type) {
if(slot->key) {
slot->key &= (~type);
if(!slot->key) {
slot->eg_gen = envelope_gen_num_release;
OPL3_EnvelopeUpdateRate(slot);
}
}
}
//
// Phase Generator
//
static void OPL3_PhaseGenerate(opl3_slot *slot) {
Bit16u f_num;
Bit32u basefreq;
f_num = slot->channel->f_num;
if(slot->reg_vib) {
Bit8s range;
Bit8u vibpos;
range = (f_num >> 7) & 7;
vibpos = slot->chip->vibpos;
if(!(vibpos & 3)) {
range = 0;
} else if(vibpos & 1) {
range >>= 1;
}
range >>= slot->chip->vibshift;
if(vibpos & 4) {
range = -range;
}
f_num += range;
}
basefreq = (f_num << slot->channel->block) >> 1;
slot->pg_phase += (basefreq * mt[slot->reg_mult]) >> 1;
}
//
// Noise Generator
//
static void OPL3_NoiseGenerate(opl3_chip *chip) {
if(chip->noise & 0x01) {
chip->noise ^= 0x800302;
}
chip->noise >>= 1;
}
//
// Slot
//
static void OPL3_SlotWrite20(opl3_slot *slot, Bit8u data) {
if((data >> 7) & 0x01) {
slot->trem = &slot->chip->tremolo;
} else {
slot->trem = (Bit8u *)&slot->chip->zeromod;
}
slot->reg_vib = (data >> 6) & 0x01;
slot->reg_type = (data >> 5) & 0x01;
slot->reg_ksr = (data >> 4) & 0x01;
slot->reg_mult = data & 0x0f;
OPL3_EnvelopeUpdateRate(slot);
}
static void OPL3_SlotWrite40(opl3_slot *slot, Bit8u data) {
slot->reg_ksl = (data >> 6) & 0x03;
slot->reg_tl = data & 0x3f;
OPL3_EnvelopeUpdateKSL(slot);
}
static void OPL3_SlotWrite60(opl3_slot *slot, Bit8u data) {
slot->reg_ar = (data >> 4) & 0x0f;
slot->reg_dr = data & 0x0f;
OPL3_EnvelopeUpdateRate(slot);
}
static void OPL3_SlotWrite80(opl3_slot *slot, Bit8u data) {
slot->reg_sl = (data >> 4) & 0x0f;
if(slot->reg_sl == 0x0f) {
slot->reg_sl = 0x1f;
}
slot->reg_rr = data & 0x0f;
OPL3_EnvelopeUpdateRate(slot);
}
static void OPL3_SlotWriteE0(opl3_slot *slot, Bit8u data) {
slot->reg_wf = data & 0x07;
if(slot->chip->newm == 0x00) {
slot->reg_wf &= 0x03;
}
}
static void OPL3_SlotGeneratePhase(opl3_slot *slot, Bit16u phase) {
slot->out = envelope_sin[slot->reg_wf](phase, slot->eg_out);
}
static void OPL3_SlotGenerate(opl3_slot *slot) {
OPL3_SlotGeneratePhase(slot, (Bit16u)(slot->pg_phase >> 9) + *slot->mod);
}
static void OPL3_SlotGenerateZM(opl3_slot *slot) {
OPL3_SlotGeneratePhase(slot, (Bit16u)(slot->pg_phase >> 9));
}
static void OPL3_SlotCalcFB(opl3_slot *slot) {
if(slot->channel->fb != 0x00) {
slot->fbmod = (slot->prout + slot->out) >> (0x09 - slot->channel->fb);
} else {
slot->fbmod = 0;
}
slot->prout = slot->out;
}
//
// Channel
//
static void OPL3_ChannelSetupAlg(opl3_channel *channel);
static void OPL3_ChannelUpdateRhythm(opl3_chip *chip, Bit8u data) {
opl3_channel *channel6;
opl3_channel *channel7;
opl3_channel *channel8;
Bit8u chnum;
chip->rhy = data & 0x3f;
if(chip->rhy & 0x20) {
channel6 = &chip->channel[6];
channel7 = &chip->channel[7];
channel8 = &chip->channel[8];
channel6->out[0] = &channel6->slots[1]->out;
channel6->out[1] = &channel6->slots[1]->out;
channel6->out[2] = &chip->zeromod;
channel6->out[3] = &chip->zeromod;
channel7->out[0] = &channel7->slots[0]->out;
channel7->out[1] = &channel7->slots[0]->out;
channel7->out[2] = &channel7->slots[1]->out;
channel7->out[3] = &channel7->slots[1]->out;
channel8->out[0] = &channel8->slots[0]->out;
channel8->out[1] = &channel8->slots[0]->out;
channel8->out[2] = &channel8->slots[1]->out;
channel8->out[3] = &channel8->slots[1]->out;
for(chnum = 6; chnum < 9; chnum++) {
chip->channel[chnum].chtype = ch_drum;
}
OPL3_ChannelSetupAlg(channel6);
// hh
if(chip->rhy & 0x01) {
OPL3_EnvelopeKeyOn(channel7->slots[0], egk_drum);
} else {
OPL3_EnvelopeKeyOff(channel7->slots[0], egk_drum);
}
// tc
if(chip->rhy & 0x02) {
OPL3_EnvelopeKeyOn(channel8->slots[1], egk_drum);
} else {
OPL3_EnvelopeKeyOff(channel8->slots[1], egk_drum);
}
// tom
if(chip->rhy & 0x04) {
OPL3_EnvelopeKeyOn(channel8->slots[0], egk_drum);
} else {
OPL3_EnvelopeKeyOff(channel8->slots[0], egk_drum);
}
// sd
if(chip->rhy & 0x08) {
OPL3_EnvelopeKeyOn(channel7->slots[1], egk_drum);
} else {
OPL3_EnvelopeKeyOff(channel7->slots[1], egk_drum);
}
// bd
if(chip->rhy & 0x10) {
OPL3_EnvelopeKeyOn(channel6->slots[0], egk_drum);
OPL3_EnvelopeKeyOn(channel6->slots[1], egk_drum);
} else {
OPL3_EnvelopeKeyOff(channel6->slots[0], egk_drum);
OPL3_EnvelopeKeyOff(channel6->slots[1], egk_drum);
}
} else {
for(chnum = 6; chnum < 9; chnum++) {
chip->channel[chnum].chtype = ch_2op;
OPL3_ChannelSetupAlg(&chip->channel[chnum]);
}
}
}
static void OPL3_ChannelWriteA0(opl3_channel *channel, Bit8u data) {
if(channel->chip->newm && channel->chtype == ch_4op2) {
return;
}
channel->f_num = (channel->f_num & 0x300) | data;
channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01);
OPL3_EnvelopeUpdateKSL(channel->slots[0]);
OPL3_EnvelopeUpdateKSL(channel->slots[1]);
OPL3_EnvelopeUpdateRate(channel->slots[0]);
OPL3_EnvelopeUpdateRate(channel->slots[1]);
if(channel->chip->newm && channel->chtype == ch_4op) {
channel->pair->f_num = channel->f_num;
channel->pair->ksv = channel->ksv;
OPL3_EnvelopeUpdateKSL(channel->pair->slots[0]);
OPL3_EnvelopeUpdateKSL(channel->pair->slots[1]);
OPL3_EnvelopeUpdateRate(channel->pair->slots[0]);
OPL3_EnvelopeUpdateRate(channel->pair->slots[1]);
}
}
static void OPL3_ChannelWriteB0(opl3_channel *channel, Bit8u data) {
if(channel->chip->newm && channel->chtype == ch_4op2) {
return;
}
channel->f_num = (channel->f_num & 0xff) | ((data & 0x03) << 8);
channel->block = (data >> 2) & 0x07;
channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01);
OPL3_EnvelopeUpdateKSL(channel->slots[0]);
OPL3_EnvelopeUpdateKSL(channel->slots[1]);
OPL3_EnvelopeUpdateRate(channel->slots[0]);
OPL3_EnvelopeUpdateRate(channel->slots[1]);
if(channel->chip->newm && channel->chtype == ch_4op) {
channel->pair->f_num = channel->f_num;
channel->pair->block = channel->block;
channel->pair->ksv = channel->ksv;
OPL3_EnvelopeUpdateKSL(channel->pair->slots[0]);
OPL3_EnvelopeUpdateKSL(channel->pair->slots[1]);
OPL3_EnvelopeUpdateRate(channel->pair->slots[0]);
OPL3_EnvelopeUpdateRate(channel->pair->slots[1]);
}
}
static void OPL3_ChannelSetupAlg(opl3_channel *channel) {
if(channel->chtype == ch_drum) {
switch(channel->alg & 0x01) {
case 0x00:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->slots[0]->out;
break;
case 0x01:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->chip->zeromod;
break;
}
return;
}
if(channel->alg & 0x08) {
return;
}
if(channel->alg & 0x04) {
channel->pair->out[0] = &channel->chip->zeromod;
channel->pair->out[1] = &channel->chip->zeromod;
channel->pair->out[2] = &channel->chip->zeromod;
channel->pair->out[3] = &channel->chip->zeromod;
switch(channel->alg & 0x03) {
case 0x00:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->pair->slots[0]->out;
channel->slots[0]->mod = &channel->pair->slots[1]->out;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->slots[1]->out;
channel->out[1] = &channel->chip->zeromod;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x01:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->pair->slots[0]->out;
channel->slots[0]->mod = &channel->chip->zeromod;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->pair->slots[1]->out;
channel->out[1] = &channel->slots[1]->out;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x02:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->chip->zeromod;
channel->slots[0]->mod = &channel->pair->slots[1]->out;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->pair->slots[0]->out;
channel->out[1] = &channel->slots[1]->out;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x03:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->chip->zeromod;
channel->slots[0]->mod = &channel->pair->slots[1]->out;
channel->slots[1]->mod = &channel->chip->zeromod;
channel->out[0] = &channel->pair->slots[0]->out;
channel->out[1] = &channel->slots[0]->out;
channel->out[2] = &channel->slots[1]->out;
channel->out[3] = &channel->chip->zeromod;
break;
}
} else {
switch(channel->alg & 0x01) {
case 0x00:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->slots[1]->out;
channel->out[1] = &channel->chip->zeromod;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x01:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->chip->zeromod;
channel->out[0] = &channel->slots[0]->out;
channel->out[1] = &channel->slots[1]->out;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
}
}
}
static void OPL3_ChannelWriteC0(opl3_channel *channel, Bit8u data) {
channel->fb = (data & 0x0e) >> 1;
channel->con = data & 0x01;
channel->alg = channel->con;
if(channel->chip->newm) {
if(channel->chtype == ch_4op) {
channel->pair->alg = 0x04 | (channel->con << 1) | (channel->pair->con);
channel->alg = 0x08;
OPL3_ChannelSetupAlg(channel->pair);
} else if(channel->chtype == ch_4op2) {
channel->alg = 0x04 | (channel->pair->con << 1) | (channel->con);
channel->pair->alg = 0x08;
OPL3_ChannelSetupAlg(channel);
} else {
OPL3_ChannelSetupAlg(channel);
}
} else {
OPL3_ChannelSetupAlg(channel);
}
if(channel->chip->extp) {
} else if(channel->chip->newm) {
channel->cha = ((data >> 4) & 0x01) ? ~0 : 0;
channel->chb = ((data >> 5) & 0x01) ? ~0 : 0;
} else {
channel->cha = channel->chb = ~0;
}
}
static void OPL3_ChannelKeyOn(opl3_channel *channel) {
if(channel->chip->newm) {
if(channel->chtype == ch_4op) {
OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm);
OPL3_EnvelopeKeyOn(channel->pair->slots[0], egk_norm);
OPL3_EnvelopeKeyOn(channel->pair->slots[1], egk_norm);
} else if(channel->chtype == ch_2op || channel->chtype == ch_drum) {
OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm);
}
} else {
OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm);
}
}
static void OPL3_ChannelKeyOff(opl3_channel *channel) {
if(channel->chip->newm) {
if(channel->chtype == ch_4op) {
OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm);
OPL3_EnvelopeKeyOff(channel->pair->slots[0], egk_norm);
OPL3_EnvelopeKeyOff(channel->pair->slots[1], egk_norm);
} else if(channel->chtype == ch_2op || channel->chtype == ch_drum) {
OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm);
}
} else {
OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm);
}
}
static void OPL3_ChannelSet4Op(opl3_chip *chip, Bit8u data) {
Bit8u bit;
Bit8u chnum;
for(bit = 0; bit < 6; bit++) {
chnum = bit;
if(bit >= 3) {
chnum += 9 - 3;
}
if((data >> bit) & 0x01) {
chip->channel[chnum].chtype = ch_4op;
chip->channel[chnum + 3].chtype = ch_4op2;
} else {
chip->channel[chnum].chtype = ch_2op;
chip->channel[chnum + 3].chtype = ch_2op;
}
}
}
static Bit16s OPL3_ClipSample(Bit32s sample) {
if(sample > 32767) {
sample = 32767;
} else if(sample < -32768) {
sample = -32768;
}
return (Bit16s)sample;
}
static void OPL3_GenerateRhythm1(opl3_chip *chip) {
opl3_channel *channel6;
opl3_channel *channel7;
opl3_channel *channel8;
Bit16u phase14;
Bit16u phase17;
Bit16u phase;
Bit16u phasebit;
channel6 = &chip->channel[6];
channel7 = &chip->channel[7];
channel8 = &chip->channel[8];
OPL3_SlotGenerate(channel6->slots[0]);
phase14 = (channel7->slots[0]->pg_phase >> 9) & 0x3ff;
phase17 = (channel8->slots[1]->pg_phase >> 9) & 0x3ff;
phase = 0x00;
// hh tc phase bit
phasebit = ((phase14 & 0x08) | (((phase14 >> 5) ^ phase14) & 0x04) | (((phase17 >> 2) ^ phase17) & 0x08)) ? 0x01 : 0x00;
// hh
phase = (phasebit << 9) | (0x34 << ((phasebit ^ (chip->noise & 0x01) << 1)));
OPL3_SlotGeneratePhase(channel7->slots[0], phase);
// tt
OPL3_SlotGenerateZM(channel8->slots[0]);
}
static void OPL3_GenerateRhythm2(opl3_chip *chip) {
opl3_channel *channel6;
opl3_channel *channel7;
opl3_channel *channel8;
Bit16u phase14;
Bit16u phase17;
Bit16u phase;
Bit16u phasebit;
channel6 = &chip->channel[6];
channel7 = &chip->channel[7];
channel8 = &chip->channel[8];
OPL3_SlotGenerate(channel6->slots[1]);
phase14 = (channel7->slots[0]->pg_phase >> 9) & 0x3ff;
phase17 = (channel8->slots[1]->pg_phase >> 9) & 0x3ff;
phase = 0x00;
// hh tc phase bit
phasebit = ((phase14 & 0x08) | (((phase14 >> 5) ^ phase14) & 0x04) | (((phase17 >> 2) ^ phase17) & 0x08)) ? 0x01 : 0x00;
// sd
phase = (0x100 << ((phase14 >> 8) & 0x01)) ^ ((chip->noise & 0x01) << 8);
OPL3_SlotGeneratePhase(channel7->slots[1], phase);
// tc
phase = 0x100 | (phasebit << 9);
OPL3_SlotGeneratePhase(channel8->slots[1], phase);
}
void OPL3_Generate(opl3_chip *chip, Bit16s *buf) {
Bit8u ii;
Bit8u jj;
Bit16s accm;
buf[1] = OPL3_ClipSample(chip->mixbuff[1]);
for(ii = 0; ii < 12; ii++) {
OPL3_SlotCalcFB(&chip->slot[ii]);
OPL3_PhaseGenerate(&chip->slot[ii]);
OPL3_EnvelopeCalc(&chip->slot[ii]);
OPL3_SlotGenerate(&chip->slot[ii]);
}
for(ii = 12; ii < 15; ii++) {
OPL3_SlotCalcFB(&chip->slot[ii]);
OPL3_PhaseGenerate(&chip->slot[ii]);
OPL3_EnvelopeCalc(&chip->slot[ii]);
}
if(chip->rhy & 0x20) {
OPL3_GenerateRhythm1(chip);
} else {
OPL3_SlotGenerate(&chip->slot[12]);
OPL3_SlotGenerate(&chip->slot[13]);
OPL3_SlotGenerate(&chip->slot[14]);
}
chip->mixbuff[0] = 0;
if(chip->extp)
for(ii = 0; ii < 18; ii++) {
accm = 0;
for(jj = 0; jj < 4; jj++) {
accm += *chip->channel[ii].out[jj];
}
chip->mixbuff[0] += (Bit16s)(accm * chip->channel[ii].cha / 65535);
}
else
for(ii = 0; ii < 18; ii++) {
accm = 0;
for(jj = 0; jj < 4; jj++) {
accm += *chip->channel[ii].out[jj];
}
chip->mixbuff[0] += (Bit16s)(accm & chip->channel[ii].cha);
}
for(ii = 15; ii < 18; ii++) {
OPL3_SlotCalcFB(&chip->slot[ii]);
OPL3_PhaseGenerate(&chip->slot[ii]);
OPL3_EnvelopeCalc(&chip->slot[ii]);
}
if(chip->rhy & 0x20) {
OPL3_GenerateRhythm2(chip);
} else {
OPL3_SlotGenerate(&chip->slot[15]);
OPL3_SlotGenerate(&chip->slot[16]);
OPL3_SlotGenerate(&chip->slot[17]);
}
buf[0] = OPL3_ClipSample(chip->mixbuff[0]);
for(ii = 18; ii < 33; ii++) {
OPL3_SlotCalcFB(&chip->slot[ii]);
OPL3_PhaseGenerate(&chip->slot[ii]);
OPL3_EnvelopeCalc(&chip->slot[ii]);
OPL3_SlotGenerate(&chip->slot[ii]);
}
chip->mixbuff[1] = 0;
if(chip->extp)
for(ii = 0; ii < 18; ii++) {
accm = 0;
for(jj = 0; jj < 4; jj++) {
accm += *chip->channel[ii].out[jj];
}
chip->mixbuff[1] += (Bit16s)(accm * chip->channel[ii].chb / 65535);
}
else
for(ii = 0; ii < 18; ii++) {
accm = 0;
for(jj = 0; jj < 4; jj++) {
accm += *chip->channel[ii].out[jj];
}
chip->mixbuff[1] += (Bit16s)(accm & chip->channel[ii].chb);
}
for(ii = 33; ii < 36; ii++) {
OPL3_SlotCalcFB(&chip->slot[ii]);
OPL3_PhaseGenerate(&chip->slot[ii]);
OPL3_EnvelopeCalc(&chip->slot[ii]);
OPL3_SlotGenerate(&chip->slot[ii]);
}
OPL3_NoiseGenerate(chip);
if((chip->timer & 0x3f) == 0x3f) {
chip->tremolopos = (chip->tremolopos + 1) % 210;
if(chip->tremolopos < 105) {
chip->tremolo = chip->tremolopos >> chip->tremoloshift;
} else {
chip->tremolo = (210 - chip->tremolopos) >> chip->tremoloshift;
}
}
if((chip->timer & 0x3ff) == 0x3ff) {
chip->vibpos = (chip->vibpos + 1) & 7;
}
chip->timer++;
}
void OPL3_GenerateResampled(opl3_chip *chip, Bit16s *buf) {
while(chip->samplecnt >= chip->rateratio) {
chip->oldsamples[0] = chip->samples[0];
chip->oldsamples[1] = chip->samples[1];
OPL3_Generate(chip, chip->samples);
chip->samplecnt -= chip->rateratio;
}
buf[0] = (Bit16s)((chip->oldsamples[0] * (chip->rateratio - chip->samplecnt) + chip->samples[0] * chip->samplecnt) / chip->rateratio);
buf[1] = (Bit16s)((chip->oldsamples[1] * (chip->rateratio - chip->samplecnt) + chip->samples[1] * chip->samplecnt) / chip->rateratio);
chip->samplecnt += 1 << RSM_FRAC;
}
void OPL3_Reset(opl3_chip *chip, Bit32u samplerate) {
Bit8u slotnum;
Bit8u channum;
memset(chip, 0, sizeof(opl3_chip));
for(slotnum = 0; slotnum < 36; slotnum++) {
chip->slot[slotnum].chip = chip;
chip->slot[slotnum].mod = &chip->zeromod;
chip->slot[slotnum].eg_rout = 0x1ff;
chip->slot[slotnum].eg_out = 0x1ff;
chip->slot[slotnum].eg_gen = envelope_gen_num_off;
chip->slot[slotnum].trem = (Bit8u *)&chip->zeromod;
}
for(channum = 0; channum < 18; channum++) {
chip->channel[channum].slots[0] = &chip->slot[ch_slot[channum]];
chip->channel[channum].slots[1] = &chip->slot[ch_slot[channum] + 3];
chip->slot[ch_slot[channum]].channel = &chip->channel[channum];
chip->slot[ch_slot[channum] + 3].channel = &chip->channel[channum];
if((channum % 9) < 3) {
chip->channel[channum].pair = &chip->channel[channum + 3];
} else if((channum % 9) < 6) {
chip->channel[channum].pair = &chip->channel[channum - 3];
}
chip->channel[channum].chip = chip;
chip->channel[channum].out[0] = &chip->zeromod;
chip->channel[channum].out[1] = &chip->zeromod;
chip->channel[channum].out[2] = &chip->zeromod;
chip->channel[channum].out[3] = &chip->zeromod;
chip->channel[channum].chtype = ch_2op;
chip->channel[channum].cha = ~0;
chip->channel[channum].chb = ~0;
OPL3_ChannelSetupAlg(&chip->channel[channum]);
}
chip->noise = 0x306600;
chip->rateratio = (samplerate << RSM_FRAC) / 49716;
}
void OPL3_WriteReg(opl3_chip *chip, Bit16u reg, Bit8u v) {
Bit8u high = (reg >> 8) & 0x01;
Bit8u regm = reg & 0xff;
switch(regm & 0xf0) {
case 0x00:
if(high) {
switch(regm & 0x0f) {
case 0x04:
OPL3_ChannelSet4Op(chip, v);
break;
case 0x05:
chip->newm = v & 0x01;
break;
case 0x06:
chip->extp = v == 0x17;
break;
case 0x07:
if(chip->extp)
chip->panch = v;
break;
case 0x08:
if(chip->extp && chip->panch < 18) {
chip->channel[chip->panch].cha = (Bit16u)(cos((float)v * (M_PI / 2.0f / 255.0f)) * 65535.0f);
chip->channel[chip->panch].chb = (Bit16u)(sin((float)v * (M_PI / 2.0f / 255.0f)) * 65535.0f);
}
break;
}
} else {
switch(regm & 0x0f) {
case 0x08:
chip->nts = (v >> 6) & 0x01;
break;
}
}
break;
case 0x20:
case 0x30:
if(ad_slot[regm & 0x1f] >= 0) {
OPL3_SlotWrite20(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0x40:
case 0x50:
if(ad_slot[regm & 0x1f] >= 0) {
OPL3_SlotWrite40(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0x60:
case 0x70:
if(ad_slot[regm & 0x1f] >= 0) {
OPL3_SlotWrite60(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0x80:
case 0x90:
if(ad_slot[regm & 0x1f] >= 0) {
OPL3_SlotWrite80(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0xe0:
case 0xf0:
if(ad_slot[regm & 0x1f] >= 0) {
OPL3_SlotWriteE0(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0xa0:
if((regm & 0x0f) < 9) {
OPL3_ChannelWriteA0(&chip->channel[9 * high + (regm & 0x0f)], v);
}
break;
case 0xb0:
if(regm == 0xbd && !high) {
chip->tremoloshift = (((v >> 7) ^ 1) << 1) + 2;
chip->vibshift = ((v >> 6) & 0x01) ^ 1;
OPL3_ChannelUpdateRhythm(chip, v);
} else if((regm & 0x0f) < 9) {
OPL3_ChannelWriteB0(&chip->channel[9 * high + (regm & 0x0f)], v);
if(v & 0x20) {
OPL3_ChannelKeyOn(&chip->channel[9 * high + (regm & 0x0f)]);
} else {
OPL3_ChannelKeyOff(&chip->channel[9 * high + (regm & 0x0f)]);
}
}
break;
case 0xc0:
if((regm & 0x0f) < 9) {
OPL3_ChannelWriteC0(&chip->channel[9 * high + (regm & 0x0f)], v);
}
break;
}
}