Implement the ability to configure and select an HRIR preset to use with the HRIR filter, or remove the preset. It will validate the file's usefulness before setting it for the player to use. Also, fixed back center channel filtering for 7.0 format audio. Signed-off-by: Christopher Snowhill <kode54@gmail.com>
418 lines
18 KiB
Objective-C
418 lines
18 KiB
Objective-C
//
|
|
// HeadphoneFilter.m
|
|
// CogAudio Framework
|
|
//
|
|
// Created by Christopher Snowhill on 1/24/22.
|
|
//
|
|
|
|
#import "HeadphoneFilter.h"
|
|
#import "AudioSource.h"
|
|
#import "AudioDecoder.h"
|
|
|
|
#import <audio/audio_resampler.h>
|
|
#import <memalign.h>
|
|
|
|
@implementation HeadphoneFilter
|
|
|
|
// Symmetrical / no-echo sets
|
|
static const int8_t speakers_to_hesuvi_7[8][2][8] = {
|
|
{ { 6 }, { 6 } }, // mono/center
|
|
{ { 0, 1 }, { 1, 0 } }, // left/right
|
|
{ { 0, 1, 6 }, { 1, 0, 6 } }, // left/right/center
|
|
{ { 0, 1, 4, 5 }, { 1, 0, 5, 4 } },// left/right/left back/right back
|
|
{ { 0, 1, 6, 4, 5 }, { 1, 0, 6, 5, 4 } }, // left/right/center/back left/back right
|
|
{ { 0, 1, 6, 6, 4, 5 }, { 1, 0, 6, 6, 5, 4 } }, // left/right/center/lfe(center)/back left/back right
|
|
{ { 0, 1, 6, 6, -1, 2, 3 }, { 1, 0, 6, 6, -1, 3, 2 } }, // left/right/center/lfe(center)/back center(special)/side left/side right
|
|
{ { 0, 1, 6, 6, 4, 5, 2, 3 }, { 1, 0, 6, 6, 5, 4, 3, 2 } } // left/right/center/lfe(center)/back left/back right/side left/side right
|
|
};
|
|
|
|
// Asymmetrical / echo sets
|
|
static const int8_t speakers_to_hesuvi_14[8][2][8] = {
|
|
{ { 6 }, { 13 } }, // mono/center
|
|
{ { 0, 8 }, { 1, 7 } }, // left/right
|
|
{ { 0, 8, 6 }, { 1, 7, 13 } }, // left/right/center
|
|
{ { 0, 8, 4, 12 }, { 1, 7, 5, 11 } },// left/right/left back/right back
|
|
{ { 0, 8, 6, 4, 12 }, { 1, 7, 13, 5, 11 } }, // left/right/center/back left/back right
|
|
{ { 0, 8, 6, 6, 4, 12 }, { 1, 7, 13, 13, 5, 11 } }, // left/right/center/lfe(center)/back left/back right
|
|
{ { 0, 8, 6, 6, -1, 2, 10 }, { 1, 7, 13, 13, -1, 3, 9 } }, // left/right/center/lfe(center)/back center(special)/side left/side right
|
|
{ { 0, 8, 6, 6, 4, 12, 2, 10 }, { 1, 7, 13, 13, 5, 11, 3, 9 } } // left/right/center/lfe(center)/back left/back right/side left/side right
|
|
};
|
|
|
|
+ (BOOL)validateImpulseFile:(NSURL *)url {
|
|
id<CogSource> source = [AudioSource audioSourceForURL:url];
|
|
if (!source)
|
|
return NO;
|
|
|
|
if (![source open:url])
|
|
return NO;
|
|
|
|
id<CogDecoder> decoder = [AudioDecoder audioDecoderForSource:source];
|
|
|
|
if (decoder == nil)
|
|
return NO;
|
|
|
|
if (![decoder open:source])
|
|
{
|
|
return NO;
|
|
}
|
|
|
|
NSDictionary *properties = [decoder properties];
|
|
|
|
int impulseChannels = [[properties objectForKey:@"channels"] intValue];
|
|
|
|
if ([[properties objectForKey:@"floatingPoint"] boolValue] != YES ||
|
|
[[properties objectForKey:@"bitsPerSample"] intValue] != 32 ||
|
|
!([[properties objectForKey:@"endian"] isEqualToString:@"native"] ||
|
|
[[properties objectForKey:@"endian"] isEqualToString:@"little"]) ||
|
|
(impulseChannels != 14 && impulseChannels != 7))
|
|
return NO;
|
|
|
|
return YES;
|
|
}
|
|
|
|
- (id)initWithImpulseFile:(NSURL *)url forSampleRate:(double)sampleRate withInputChannels:(size_t)channels {
|
|
self = [super init];
|
|
|
|
if (self) {
|
|
id<CogSource> source = [AudioSource audioSourceForURL:url];
|
|
if (!source)
|
|
return nil;
|
|
|
|
if (![source open:url])
|
|
return nil;
|
|
|
|
id<CogDecoder> decoder = [AudioDecoder audioDecoderForSource:source];
|
|
|
|
if (decoder == nil)
|
|
return nil;
|
|
|
|
if (![decoder open:source])
|
|
{
|
|
return nil;
|
|
}
|
|
|
|
NSDictionary *properties = [decoder properties];
|
|
|
|
double sampleRateOfSource = [[properties objectForKey:@"sampleRate"] floatValue];
|
|
|
|
int sampleCount = [[properties objectForKey:@"totalFrames"] intValue];
|
|
int impulseChannels = [[properties objectForKey:@"channels"] intValue];
|
|
|
|
if ([[properties objectForKey:@"floatingPoint"] boolValue] != YES ||
|
|
[[properties objectForKey:@"bitsPerSample"] intValue] != 32 ||
|
|
!([[properties objectForKey:@"endian"] isEqualToString:@"native"] ||
|
|
[[properties objectForKey:@"endian"] isEqualToString:@"little"]) ||
|
|
(impulseChannels != 14 && impulseChannels != 7))
|
|
return nil;
|
|
|
|
float * impulseBuffer = calloc(sizeof(float), (sampleCount + 1024) * sizeof(float) * impulseChannels);
|
|
if (!impulseBuffer)
|
|
return nil;
|
|
|
|
if ([decoder readAudio:impulseBuffer frames:sampleCount] != sampleCount)
|
|
return nil;
|
|
|
|
[decoder close];
|
|
decoder = nil;
|
|
source = nil;
|
|
|
|
if (sampleRateOfSource != sampleRate) {
|
|
double sampleRatio = sampleRate / sampleRateOfSource;
|
|
int resampledCount = (int)ceil((double)sampleCount * sampleRatio);
|
|
|
|
void *resampler_data = NULL;
|
|
const retro_resampler_t *resampler = NULL;
|
|
|
|
if (!retro_resampler_realloc(&resampler_data, &resampler, "sinc", RESAMPLER_QUALITY_NORMAL, impulseChannels, sampleRatio)) {
|
|
free(impulseBuffer);
|
|
return nil;
|
|
}
|
|
|
|
int resamplerLatencyIn = (int) resampler->latency(resampler_data);
|
|
int resamplerLatencyOut = (int)ceil(resamplerLatencyIn * sampleRatio);
|
|
|
|
float * resampledImpulse = calloc(sizeof(float), (resampledCount + resamplerLatencyOut * 2 + 128) * sizeof(float) * impulseChannels);
|
|
|
|
memmove(impulseBuffer + resamplerLatencyIn * impulseChannels, impulseBuffer, sampleCount * sizeof(float) * impulseChannels);
|
|
memset(impulseBuffer, 0, resamplerLatencyIn * sizeof(float) * impulseChannels);
|
|
memset(impulseBuffer + (resamplerLatencyIn + sampleCount) * impulseChannels, 0, resamplerLatencyIn * sizeof(float) * impulseChannels);
|
|
|
|
struct resampler_data src_data;
|
|
src_data.data_in = impulseBuffer;
|
|
src_data.input_frames = sampleCount + resamplerLatencyIn * 2;
|
|
src_data.data_out = resampledImpulse;
|
|
src_data.output_frames = 0;
|
|
src_data.ratio = sampleRatio;
|
|
|
|
resampler->process(resampler_data, &src_data);
|
|
|
|
resampler->free(resampler, resampler_data);
|
|
|
|
src_data.output_frames -= resamplerLatencyOut * 2;
|
|
|
|
memmove(resampledImpulse, resampledImpulse + resamplerLatencyOut * impulseChannels, src_data.output_frames * sizeof(float) * impulseChannels);
|
|
|
|
free(impulseBuffer);
|
|
impulseBuffer = resampledImpulse;
|
|
sampleCount = (int) src_data.output_frames;
|
|
}
|
|
|
|
channelCount = channels;
|
|
|
|
bufferSize = 512;
|
|
fftSize = sampleCount + bufferSize;
|
|
|
|
int pow = 1;
|
|
while (fftSize > 2) { pow++; fftSize /= 2; }
|
|
fftSize = 2 << pow;
|
|
|
|
float * deinterleavedImpulseBuffer = (float *) memalign_calloc(16, sizeof(float), fftSize * impulseChannels);
|
|
if (!deinterleavedImpulseBuffer) {
|
|
free(impulseBuffer);
|
|
return nil;
|
|
}
|
|
|
|
for (size_t i = 0; i < impulseChannels; ++i) {
|
|
cblas_scopy(sampleCount, impulseBuffer + i, impulseChannels, deinterleavedImpulseBuffer + i * fftSize, 1);
|
|
}
|
|
|
|
free(impulseBuffer);
|
|
|
|
paddedBufferSize = fftSize;
|
|
fftSizeOver2 = (fftSize + 1) / 2;
|
|
log2n = log2f(fftSize);
|
|
log2nhalf = log2n / 2;
|
|
|
|
fftSetup = vDSP_create_fftsetup(log2n, FFT_RADIX2);
|
|
if (!fftSetup) {
|
|
memalign_free(deinterleavedImpulseBuffer);
|
|
return nil;
|
|
}
|
|
|
|
paddedSignal = (float *) memalign_calloc(16, sizeof(float), paddedBufferSize);
|
|
if (!paddedSignal) {
|
|
memalign_free(deinterleavedImpulseBuffer);
|
|
return nil;
|
|
}
|
|
|
|
signal_fft.realp = (float *) memalign_calloc(16, sizeof(float), fftSizeOver2);
|
|
signal_fft.imagp = (float *) memalign_calloc(16, sizeof(float), fftSizeOver2);
|
|
if (!signal_fft.realp || !signal_fft.imagp) {
|
|
memalign_free(deinterleavedImpulseBuffer);
|
|
return nil;
|
|
}
|
|
|
|
input_filtered_signal_per_channel[0].realp = (float *) memalign_calloc(16, sizeof(float), fftSizeOver2);
|
|
input_filtered_signal_per_channel[0].imagp = (float *) memalign_calloc(16, sizeof(float), fftSizeOver2);
|
|
if (!input_filtered_signal_per_channel[0].realp ||
|
|
!input_filtered_signal_per_channel[0].imagp) {
|
|
memalign_free(deinterleavedImpulseBuffer);
|
|
return nil;
|
|
}
|
|
|
|
input_filtered_signal_per_channel[1].realp = (float *) memalign_calloc(16, sizeof(float), fftSizeOver2);
|
|
input_filtered_signal_per_channel[1].imagp = (float *) memalign_calloc(16, sizeof(float), fftSizeOver2);
|
|
if (!input_filtered_signal_per_channel[1].realp ||
|
|
!input_filtered_signal_per_channel[1].imagp) {
|
|
memalign_free(deinterleavedImpulseBuffer);
|
|
return nil;
|
|
}
|
|
|
|
impulse_responses = (COMPLEX_SPLIT *) calloc(sizeof(COMPLEX_SPLIT), channels * 2);
|
|
if (!impulse_responses) {
|
|
memalign_free(deinterleavedImpulseBuffer);
|
|
return nil;
|
|
}
|
|
|
|
for (size_t i = 0; i < channels; ++i) {
|
|
impulse_responses[i * 2 + 0].realp = (float *) memalign_calloc(16, sizeof(float), fftSizeOver2);
|
|
impulse_responses[i * 2 + 0].imagp = (float *) memalign_calloc(16, sizeof(float), fftSizeOver2);
|
|
impulse_responses[i * 2 + 1].realp = (float *) memalign_calloc(16, sizeof(float), fftSizeOver2);
|
|
impulse_responses[i * 2 + 1].imagp = (float *) memalign_calloc(16, sizeof(float), fftSizeOver2);
|
|
|
|
if (!impulse_responses[i * 2 + 0].realp || !impulse_responses[i * 2 + 0].imagp ||
|
|
!impulse_responses[i * 2 + 1].realp || !impulse_responses[i * 2 + 1].imagp) {
|
|
memalign_free(deinterleavedImpulseBuffer);
|
|
return nil;
|
|
}
|
|
|
|
int leftInChannel;
|
|
int rightInChannel;
|
|
|
|
if (impulseChannels == 7) {
|
|
leftInChannel = speakers_to_hesuvi_7[channels-1][0][i];
|
|
rightInChannel = speakers_to_hesuvi_7[channels-1][1][i];
|
|
}
|
|
else {
|
|
leftInChannel = speakers_to_hesuvi_14[channels-1][0][i];
|
|
rightInChannel = speakers_to_hesuvi_14[channels-1][1][i];
|
|
}
|
|
|
|
if (leftInChannel == -1 || rightInChannel == -1) {
|
|
float * temp;
|
|
if (impulseChannels == 7) {
|
|
temp = calloc(sizeof(float), fftSize);
|
|
if (!temp) {
|
|
memalign_free(deinterleavedImpulseBuffer);
|
|
return nil;
|
|
}
|
|
|
|
cblas_scopy((int)fftSize, temp, 1, deinterleavedImpulseBuffer + 4 * fftSize, 1);
|
|
vDSP_vadd(temp, 1, deinterleavedImpulseBuffer + 5 * fftSize, 1, temp, 1, fftSize);
|
|
|
|
vDSP_ctoz((DSPComplex *)temp, 2, &impulse_responses[i * 2 + 0], 1, fftSizeOver2);
|
|
vDSP_ctoz((DSPComplex *)temp, 2, &impulse_responses[i * 2 + 1], 1, fftSizeOver2);
|
|
}
|
|
else {
|
|
temp = calloc(sizeof(float), fftSize * 2);
|
|
if (!temp) {
|
|
memalign_free(deinterleavedImpulseBuffer);
|
|
return nil;
|
|
}
|
|
|
|
cblas_scopy((int)fftSize, temp, 1, deinterleavedImpulseBuffer + 4 * fftSize, 1);
|
|
vDSP_vadd(temp, 1, deinterleavedImpulseBuffer + 12 * fftSize, 1, temp, 1, fftSize);
|
|
|
|
cblas_scopy((int)fftSize, temp + fftSize, 1, deinterleavedImpulseBuffer + 5 * fftSize, 1);
|
|
vDSP_vadd(temp + fftSize, 1, deinterleavedImpulseBuffer + 11 * fftSize, 1, temp + fftSize, 1, fftSize);
|
|
|
|
vDSP_ctoz((DSPComplex *)temp, 2, &impulse_responses[i * 2 + 0], 1, fftSizeOver2);
|
|
vDSP_ctoz((DSPComplex *)(temp + fftSize), 2, &impulse_responses[i * 2 + 1], 1, fftSizeOver2);
|
|
}
|
|
|
|
free(temp);
|
|
}
|
|
else {
|
|
vDSP_ctoz((DSPComplex *)(deinterleavedImpulseBuffer + leftInChannel * fftSize), 2, &impulse_responses[i * 2 + 0], 1, fftSizeOver2);
|
|
vDSP_ctoz((DSPComplex *)(deinterleavedImpulseBuffer + rightInChannel * fftSize), 2, &impulse_responses[i * 2 + 1], 1, fftSizeOver2);
|
|
}
|
|
|
|
vDSP_fft_zrip(fftSetup, &impulse_responses[i * 2 + 0], 1, log2n, FFT_FORWARD);
|
|
vDSP_fft_zrip(fftSetup, &impulse_responses[i * 2 + 1], 1, log2n, FFT_FORWARD);
|
|
}
|
|
|
|
memalign_free(deinterleavedImpulseBuffer);
|
|
|
|
left_result = (float *) memalign_calloc(16, sizeof(float), fftSize);
|
|
right_result = (float *) memalign_calloc(16, sizeof(float), fftSize);
|
|
if (!left_result || !right_result)
|
|
return nil;
|
|
|
|
prevOverlap[0] = (float *) memalign_calloc(16, sizeof(float), fftSize);
|
|
prevOverlap[1] = (float *) memalign_calloc(16, sizeof(float), fftSize);
|
|
if (!prevOverlap[0] || !prevOverlap[1])
|
|
return nil;
|
|
|
|
left_mix_result = (float *) memalign_calloc(16, sizeof(float), fftSize);
|
|
right_mix_result = (float *) memalign_calloc(16, sizeof(float), fftSize);
|
|
if (!left_mix_result || !right_mix_result)
|
|
return nil;
|
|
|
|
prevOverlapLength = 0;
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
- (void)dealloc {
|
|
if (paddedSignal) memalign_free(paddedSignal);
|
|
|
|
if (signal_fft.realp) memalign_free(signal_fft.realp);
|
|
if (signal_fft.imagp) memalign_free(signal_fft.imagp);
|
|
|
|
if (input_filtered_signal_per_channel[0].realp) memalign_free(input_filtered_signal_per_channel[0].realp);
|
|
if (input_filtered_signal_per_channel[0].imagp) memalign_free(input_filtered_signal_per_channel[0].imagp);
|
|
if (input_filtered_signal_per_channel[1].realp) memalign_free(input_filtered_signal_per_channel[1].realp);
|
|
if (input_filtered_signal_per_channel[1].imagp) memalign_free(input_filtered_signal_per_channel[1].imagp);
|
|
|
|
if (impulse_responses) {
|
|
for (size_t i = 0; i < channelCount * 2; ++i) {
|
|
if (impulse_responses[i].realp) memalign_free(impulse_responses[i].realp);
|
|
if (impulse_responses[i].imagp) memalign_free(impulse_responses[i].imagp);
|
|
}
|
|
free(impulse_responses);
|
|
}
|
|
|
|
memalign_free(left_result);
|
|
memalign_free(right_result);
|
|
|
|
if (prevOverlap[0]) memalign_free(prevOverlap[0]);
|
|
if (prevOverlap[1]) memalign_free(prevOverlap[1]);
|
|
|
|
memalign_free(left_mix_result);
|
|
memalign_free(right_mix_result);
|
|
}
|
|
|
|
- (void)process:(const float*)inBuffer sampleCount:(size_t)count toBuffer:(float *)outBuffer {
|
|
float scale = 1.0 / (8.0 * (float)fftSize);
|
|
|
|
while (count > 0) {
|
|
size_t countToDo = (count > bufferSize) ? bufferSize : count;
|
|
|
|
vDSP_vclr(left_mix_result, 1, fftSize);
|
|
vDSP_vclr(right_mix_result, 1, fftSize);
|
|
|
|
for (size_t i = 0; i < channelCount; ++i) {
|
|
cblas_scopy((int)countToDo, inBuffer + i, (int)channelCount, paddedSignal, 1);
|
|
|
|
vDSP_vclr(paddedSignal + countToDo, 1, paddedBufferSize - countToDo);
|
|
|
|
vDSP_ctoz((DSPComplex *)paddedSignal, 2, &signal_fft, 1, fftSizeOver2);
|
|
|
|
vDSP_fft_zrip(fftSetup, &signal_fft, 1, log2n, FFT_FORWARD);
|
|
|
|
// One channel forward, then multiply and back twice
|
|
|
|
float preserveIRNyq = impulse_responses[i * 2 + 0].imagp[0];
|
|
float preserveSigNyq = signal_fft.imagp[0];
|
|
impulse_responses[i * 2 + 0].imagp[0] = 0;
|
|
signal_fft.imagp[0] = 0;
|
|
|
|
vDSP_zvmul(&signal_fft, 1, &impulse_responses[i * 2 + 0], 1, &input_filtered_signal_per_channel[0], 1, fftSizeOver2, 1);
|
|
|
|
input_filtered_signal_per_channel[0].imagp[0] = preserveIRNyq * preserveSigNyq;
|
|
impulse_responses[i * 2 + 0].imagp[0] = preserveIRNyq;
|
|
|
|
preserveIRNyq = impulse_responses[i * 2 + 1].imagp[0];
|
|
impulse_responses[i * 2 + 1].imagp[0] = 0;
|
|
|
|
vDSP_zvmul(&signal_fft, 1, &impulse_responses[i * 2 + 1], 1, &input_filtered_signal_per_channel[1], 1, fftSizeOver2, 1);
|
|
|
|
input_filtered_signal_per_channel[1].imagp[0] = preserveIRNyq * preserveSigNyq;
|
|
impulse_responses[i * 2 + 1].imagp[0] = preserveIRNyq;
|
|
|
|
vDSP_fft_zrip(fftSetup, &input_filtered_signal_per_channel[0], 1, log2n, FFT_INVERSE);
|
|
vDSP_fft_zrip(fftSetup, &input_filtered_signal_per_channel[1], 1, log2n, FFT_INVERSE);
|
|
|
|
vDSP_ztoc(&input_filtered_signal_per_channel[0], 1, (DSPComplex *)left_result, 2, fftSizeOver2);
|
|
vDSP_ztoc(&input_filtered_signal_per_channel[1], 1, (DSPComplex *)right_result, 2, fftSizeOver2);
|
|
|
|
vDSP_vadd(left_mix_result, 1, left_result, 1, left_mix_result, 1, fftSize);
|
|
vDSP_vadd(right_mix_result, 1, right_result, 1, right_mix_result, 1, fftSize);
|
|
}
|
|
|
|
// Integrate previous overlap
|
|
if (prevOverlapLength) {
|
|
vDSP_vadd(prevOverlap[0], 1, left_mix_result, 1, left_mix_result, 1, prevOverlapLength);
|
|
vDSP_vadd(prevOverlap[1], 1, right_mix_result, 1, right_mix_result, 1, prevOverlapLength);
|
|
}
|
|
|
|
prevOverlapLength = (int)(fftSize - countToDo);
|
|
|
|
cblas_scopy(prevOverlapLength, left_mix_result + countToDo, 1, prevOverlap[0], 1);
|
|
cblas_scopy(prevOverlapLength, right_mix_result + countToDo, 1, prevOverlap[1], 1);
|
|
|
|
vDSP_vsmul(left_mix_result, 1, &scale, left_mix_result, 1, countToDo);
|
|
vDSP_vsmul(right_mix_result, 1, &scale, right_mix_result, 1, countToDo);
|
|
|
|
cblas_scopy((int)countToDo, left_mix_result, 1, outBuffer + 0, 2);
|
|
cblas_scopy((int)countToDo, right_mix_result, 1, outBuffer + 1, 2);
|
|
|
|
inBuffer += countToDo * channelCount;
|
|
outBuffer += countToDo * 2;
|
|
|
|
count -= countToDo;
|
|
}
|
|
}
|
|
|
|
@end
|