Cog/Frameworks/OpenMPT/OpenMPT/soundlib/Load_amf.cpp
Christopher Snowhill 4b0f27acdb Updated libOpenMPT to version 0.8.0
And reordered all the source files in the projects according to name
sort. And removed all the deleted files, including some which were
forgotten in previous updates, but left as 0 byte files. Finally,
updated the project to use C23 / C++23 language standards.

Signed-off-by: Christopher Snowhill <kode54@gmail.com>
2025-06-06 00:26:56 -07:00

803 lines
20 KiB
C++

/*
* Load_amf.cpp
* ------------
* Purpose: AMF module loader
* Notes : There are two types of AMF files, the ASYLUM Music Format (used in Crusader: No Remorse and Crusader: No Regret)
* and Advanced Music Format (DSMI / Digital Sound And Music Interface, used in various games such as Pinball World).
* Both module types are handled here.
* To make things complete, there appears to be a (potentially unofficial) variant of the DSMI AMF format called DMF,
* used in various games published by Webfoot (Tronic, H2O, PowBall, ...).
* It mostly resembles "normal" AMF files, but with all song and sample names removed and using delta-encoded samples
* (probably the origin of the "D" in DMF).
* Authors: Olivier Lapicque
* OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "Loaders.h"
#include "mpt/endian/int24.hpp"
#include <algorithm>
OPENMPT_NAMESPACE_BEGIN
// ASYLUM AMF File Header
struct AsylumFileHeader
{
char signature[32];
uint8 defaultSpeed;
uint8 defaultTempo;
uint8 numSamples;
uint8 numPatterns;
uint8 numOrders;
uint8 restartPos;
};
MPT_BINARY_STRUCT(AsylumFileHeader, 38)
// ASYLUM AMF Sample Header
struct AsylumSampleHeader
{
char name[22];
uint8le finetune;
uint8le defaultVolume;
int8le transpose;
uint32le length;
uint32le loopStart;
uint32le loopLength;
// Convert an AMF sample header to OpenMPT's internal sample header.
void ConvertToMPT(ModSample &mptSmp) const
{
mptSmp.Initialize();
mptSmp.nFineTune = MOD2XMFineTune(finetune);
mptSmp.nVolume = std::min(defaultVolume.get(), uint8(64)) * 4u;
mptSmp.RelativeTone = transpose;
mptSmp.nLength = length;
if(loopLength > 2 && loopStart + loopLength <= length)
{
mptSmp.uFlags.set(CHN_LOOP);
mptSmp.nLoopStart = loopStart;
mptSmp.nLoopEnd = loopStart + loopLength;
}
}
};
MPT_BINARY_STRUCT(AsylumSampleHeader, 37)
static bool ValidateHeader(const AsylumFileHeader &fileHeader)
{
if(std::memcmp(fileHeader.signature, "ASYLUM Music Format V1.0\0", 25)
|| fileHeader.numSamples > 64
)
{
return false;
}
return true;
}
static uint64 GetHeaderMinimumAdditionalSize(const AsylumFileHeader &fileHeader)
{
return 256 + 64 * sizeof(AsylumSampleHeader) + 64 * 4 * 8 * fileHeader.numPatterns;
}
CSoundFile::ProbeResult CSoundFile::ProbeFileHeaderAMF_Asylum(MemoryFileReader file, const uint64 *pfilesize)
{
AsylumFileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return ProbeWantMoreData;
}
if(!ValidateHeader(fileHeader))
{
return ProbeFailure;
}
return ProbeAdditionalSize(file, pfilesize, GetHeaderMinimumAdditionalSize(fileHeader));
}
bool CSoundFile::ReadAMF_Asylum(FileReader &file, ModLoadingFlags loadFlags)
{
file.Rewind();
AsylumFileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return false;
}
if(!ValidateHeader(fileHeader))
{
return false;
}
if(!file.CanRead(mpt::saturate_cast<FileReader::pos_type>(GetHeaderMinimumAdditionalSize(fileHeader))))
{
return false;
}
if(loadFlags == onlyVerifyHeader)
{
return true;
}
InitializeGlobals(MOD_TYPE_AMF0, 8);
SetupMODPanning(true);
Order().SetDefaultSpeed(fileHeader.defaultSpeed);
Order().SetDefaultTempoInt(fileHeader.defaultTempo);
m_nSamples = fileHeader.numSamples;
if(fileHeader.restartPos < fileHeader.numOrders)
{
Order().SetRestartPos(fileHeader.restartPos);
}
m_modFormat.formatName = UL_("ASYLUM Music Format");
m_modFormat.type = UL_("amf");
m_modFormat.charset = mpt::Charset::CP437;
uint8 orders[256];
file.ReadArray(orders);
ReadOrderFromArray(Order(), orders, fileHeader.numOrders);
// Read Sample Headers
for(SAMPLEINDEX smp = 1; smp <= GetNumSamples(); smp++)
{
AsylumSampleHeader sampleHeader;
file.ReadStruct(sampleHeader);
sampleHeader.ConvertToMPT(Samples[smp]);
m_szNames[smp] = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, sampleHeader.name);
}
file.Skip((64 - fileHeader.numSamples) * sizeof(AsylumSampleHeader));
// Read Patterns
Patterns.ResizeArray(fileHeader.numPatterns);
for(PATTERNINDEX pat = 0; pat < fileHeader.numPatterns; pat++)
{
if(!(loadFlags & loadPatternData) || !Patterns.Insert(pat, 64))
{
file.Skip(64 * 4 * 8);
continue;
}
for(auto &m : Patterns[pat])
{
const auto [note, instr, command, param] = file.ReadArray<uint8, 4>();
if(note && note + 12 + NOTE_MIN <= NOTE_MAX)
{
m.note = note + 12 + NOTE_MIN;
}
m.instr = instr;
ConvertModCommand(m, command, param);
#ifdef MODPLUG_TRACKER
if(m.command == CMD_PANNING8)
{
// Convert 7-bit panning to 8-bit
m.param = mpt::saturate_cast<ModCommand::PARAM>(m.param * 2u);
}
#endif
}
}
if(loadFlags & loadSampleData)
{
// Read Sample Data
const SampleIO sampleIO(
SampleIO::_8bit,
SampleIO::mono,
SampleIO::littleEndian,
SampleIO::signedPCM);
for(SAMPLEINDEX smp = 1; smp <= GetNumSamples(); smp++)
{
sampleIO.ReadSample(Samples[smp], file);
}
}
return true;
}
// DSMI AMF magic bytes
struct AMFFileSignature
{
char amf[3]; // "AMF" for regular AMF files, "DMF" for the compact format found in Webfoot games
uint8 version;
bool IsValidAMF() const
{
return !std::memcmp(amf, "AMF", 3) && (version == 1 || (version >= 8 && version <= 14));
}
bool IsValidDMF() const
{
// Version checks are only an assumption; All Webfoot games use version 14 files, but we can probably assume
// that if there are earlier versions, they differ in exactly the same way from regular AMF as those files do.
return !std::memcmp(amf, "DMF", 3) && (version >= 10 && version <= 14);
}
};
MPT_BINARY_STRUCT(AMFFileSignature, 4)
// DSMI AMF File Header
struct AMFFileHeader
{
uint8le numSamples;
uint8le numOrders;
uint16le numTracks;
uint8le numChannels; // v9+
bool IsValid(const uint8 version) const
{
if(!numSamples || !numOrders || !numTracks)
return false;
if(version < 9)
return true;
if(version < 12)
return (numChannels >= 1 && numChannels <= 16);
return (numChannels >= 1 && numChannels <= 32);
}
// How much of AMFFileHeader should actually be read
static size_t GetHeaderSize(const uint8 version)
{
return (version >= 9) ? sizeof(AMFFileHeader) : 4u;
}
};
MPT_BINARY_STRUCT(AMFFileHeader, 5)
// DSMI AMF Sample Header (v1-v9)
struct AMFSampleHeaderOld
{
uint8le type;
char name[32];
char filename[13];
uint32le index;
uint16le length;
uint16le sampleRate;
uint8le volume;
uint16le loopStart;
uint16le loopEnd;
void ConvertToMPT(ModSample &mptSmp) const
{
mptSmp.Initialize();
mptSmp.filename = mpt::String::ReadBuf(mpt::String::nullTerminated, filename);
mptSmp.nLength = length;
mptSmp.nC5Speed = sampleRate;
mptSmp.nVolume = std::min(volume.get(), uint8(64)) * 4u;
mptSmp.nLoopStart = loopStart;
mptSmp.nLoopEnd = loopEnd;
if(mptSmp.nLoopEnd == uint16_max)
mptSmp.nLoopStart = mptSmp.nLoopEnd = 0;
else if(type != 0 && mptSmp.nLoopEnd > mptSmp.nLoopStart + 2 && mptSmp.nLoopEnd <= mptSmp.nLength)
mptSmp.uFlags.set(CHN_LOOP);
}
};
MPT_BINARY_STRUCT(AMFSampleHeaderOld, 59)
// DSMI AMF Sample Header (v10+)
struct AMFSampleHeaderNew
{
uint8le type;
char name[32];
char filename[13];
uint32le index;
uint32le length;
uint16le sampleRate;
uint8le volume;
uint32le loopStart;
uint32le loopEnd;
void ConvertToMPT(ModSample &mptSmp, bool truncated) const
{
mptSmp.Initialize();
mptSmp.filename = mpt::String::ReadBuf(mpt::String::nullTerminated, filename);
mptSmp.nLength = length;
mptSmp.nC5Speed = sampleRate;
mptSmp.nVolume = std::min(volume.get(), uint8(64)) * 4u;
mptSmp.nLoopStart = loopStart;
mptSmp.nLoopEnd = loopEnd;
if(truncated && mptSmp.nLoopStart > 0)
mptSmp.nLoopEnd = mptSmp.nLength;
if(type != 0 && mptSmp.nLoopEnd > mptSmp.nLoopStart + 2 && mptSmp.nLoopEnd <= mptSmp.nLength)
mptSmp.uFlags.set(CHN_LOOP);
}
// Check if sample headers might be truncated
bool IsValid(uint8 numSamples) const
{
return type <= 1 && index <= numSamples && length <= 0x100000 && volume <= 64 && loopStart <= length && loopEnd <= length;
}
};
MPT_BINARY_STRUCT(AMFSampleHeaderNew, 65)
// DSMI DMF ("compact AMF") Sample Header
struct AMFSampleHeaderCompact
{
using uint24le = mpt::uint24le;
uint8le type;
char leftOverFirstCharOfSampleName;
uint32le index;
uint32le length;
uint16le sampleRate;
uint8le volume;
uint32le loopStart;
uint24le loopEnd;
void ConvertToMPT(ModSample &mptSmp) const
{
mptSmp.Initialize();
mptSmp.filename = std::string(1, leftOverFirstCharOfSampleName); // Why not :)
mptSmp.nLength = length;
mptSmp.nC5Speed = sampleRate;
mptSmp.nVolume = std::min(volume.get(), uint8(64)) * 4u;
mptSmp.nLoopStart = loopStart;
mptSmp.nLoopEnd = loopEnd.get();
if(type != 0 && mptSmp.nLoopEnd > mptSmp.nLoopStart + 2 && mptSmp.nLoopEnd <= mptSmp.nLength)
mptSmp.uFlags.set(CHN_LOOP);
}
};
MPT_BINARY_STRUCT(AMFSampleHeaderCompact, 20)
// Read a single AMF track (channel) into a pattern.
static void AMFReadPattern(CPattern &pattern, CHANNELINDEX chn, FileReader &fileChunk)
{
fileChunk.Rewind();
while(fileChunk.CanRead(3))
{
const auto [row, command, value] = fileChunk.ReadArray<uint8, 3>();
if(row >= pattern.GetNumRows())
{
break;
}
ModCommand &m = *pattern.GetpModCommand(row, chn);
if(command < 0x7F)
{
// Note + Volume
if(command == 0 && value == 0)
{
m.note = NOTE_NOTECUT;
} else
{
m.note = command + NOTE_MIN;
if(value != 0xFF)
{
m.volcmd = VOLCMD_VOLUME;
m.vol = value;
}
}
} else if(command == 0x7F)
{
// Instrument without note retrigger in MOD (no need to do anything here, should be preceded by 0x80 command)
} else if(command == 0x80)
{
// Instrument
m.instr = value + 1;
} else
{
// Effect
static constexpr EffectCommand effTrans[] =
{
CMD_NONE, CMD_SPEED, CMD_VOLUMESLIDE, CMD_VOLUME,
CMD_PORTAMENTOUP, CMD_NONE, CMD_TONEPORTAMENTO, CMD_TREMOR,
CMD_ARPEGGIO, CMD_VIBRATO, CMD_TONEPORTAVOL, CMD_VIBRATOVOL,
CMD_PATTERNBREAK, CMD_POSITIONJUMP, CMD_NONE, CMD_RETRIG,
CMD_OFFSET, CMD_VOLUMESLIDE, CMD_PORTAMENTOUP, CMD_S3MCMDEX,
CMD_S3MCMDEX, CMD_TEMPO, CMD_PORTAMENTOUP, CMD_PANNING8,
};
uint8 param = value;
EffectCommand cmd = CMD_NONE;
if(uint8 maskedCmd = command & 0x7F; maskedCmd < std::size(effTrans))
cmd = effTrans[maskedCmd];
// Fix some commands...
switch(command & 0x7F)
{
// 02: Volume Slide
// 0A: Tone Porta + Vol Slide
// 0B: Vibrato + Vol Slide
case 0x02:
case 0x0A:
case 0x0B:
if(param & 0x80)
param = (-static_cast<int8>(param)) & 0x0F;
else
param = (param & 0x0F) << 4;
break;
// 03: Volume
case 0x03:
param = std::min(param, uint8(64));
if(m.volcmd == VOLCMD_NONE || m.volcmd == VOLCMD_VOLUME)
{
m.volcmd = VOLCMD_VOLUME;
m.vol = param;
cmd = CMD_NONE;
}
break;
// 04: Porta Up/Down
case 0x04:
if(param & 0x80)
param = (-static_cast<int8>(param)) & 0x7F;
else
cmd = CMD_PORTAMENTODOWN;
break;
// 11: Fine Volume Slide
case 0x11:
if(param)
{
if(param & 0x80)
param = static_cast<uint8>(0xF0 | ((-static_cast<int8>(param)) & 0x0F));
else
param = 0x0F | ((param & 0x0F) << 4);
} else
{
cmd = CMD_NONE;
}
break;
// 12: Fine Portamento
// 16: Extra Fine Portamento
case 0x12:
case 0x16:
if(param)
{
cmd = (param & 0x80) ? CMD_PORTAMENTOUP : CMD_PORTAMENTODOWN;
if(param & 0x80)
{
param = ((-static_cast<int8>(param)) & 0x0F);
}
param |= (command == 0x16) ? 0xE0 : 0xF0;
} else
{
cmd = CMD_NONE;
}
break;
// 13: Note Delay
case 0x13:
param = 0xD0 | (param & 0x0F);
break;
// 14: Note Cut
case 0x14:
param = 0xC0 | (param & 0x0F);
break;
// 17: Panning
case 0x17:
if(param == 100)
{
// History lesson intermission: According to Otto Chrons, he remembers that he added support
// for 8A4 / XA4 "surround" panning in DMP for MOD and S3M files before any other trackers did,
// So DSMI / DMP are most likely the original source of these 7-bit panning + surround commands!
param = 0xA4;
} else
{
param = static_cast<uint8>(std::clamp(static_cast<int8>(param) + 64, 0, 128));
if(m.command != CMD_NONE)
{
// Move to volume column if required
if(m.volcmd == VOLCMD_NONE || m.volcmd == VOLCMD_PANNING)
{
m.volcmd = VOLCMD_PANNING;
m.vol = param / 2;
}
cmd = CMD_NONE;
}
}
break;
}
if(cmd != CMD_NONE)
{
m.command = cmd;
m.param = param;
}
}
}
}
CSoundFile::ProbeResult CSoundFile::ProbeFileHeaderAMF_DSMI(MemoryFileReader file, const uint64 *pfilesize)
{
AMFFileSignature fileSignature;
if(!file.ReadStruct(fileSignature))
{
return CSoundFile::ProbeWantMoreData;
}
if(fileSignature.IsValidAMF())
{
if(!file.Skip(32))
return CSoundFile::ProbeWantMoreData;
} else if(!fileSignature.IsValidDMF())
{
return ProbeFailure;
}
AMFFileHeader fileHeader;
if(!file.ReadStructPartial(fileHeader, AMFFileHeader::GetHeaderSize(fileSignature.version)))
{
return ProbeWantMoreData;
}
if(!fileHeader.IsValid(fileSignature.version))
{
return ProbeFailure;
}
MPT_UNREFERENCED_PARAMETER(pfilesize);
return ProbeSuccess;
}
bool CSoundFile::ReadAMF_DSMI(FileReader &file, ModLoadingFlags loadFlags)
{
file.Rewind();
AMFFileSignature fileSignature;
if(!file.ReadStruct(fileSignature))
return false;
char title[32] = {};
bool isDMF = false;
if(fileSignature.IsValidAMF() && file.CanRead(sizeof(title)))
file.ReadArray(title);
else if(fileSignature.IsValidDMF())
isDMF = true;
else
return false;
AMFFileHeader fileHeader;
if(!file.ReadStructPartial(fileHeader, AMFFileHeader::GetHeaderSize(fileSignature.version)))
return false;
if(!fileHeader.IsValid(fileSignature.version))
return false;
if(loadFlags == onlyVerifyHeader)
return true;
InitializeGlobals(MOD_TYPE_AMF, (fileSignature.version < 9) ? 4 : fileHeader.numChannels);
if(isDMF)
{
m_modFormat.formatName = MPT_UFORMAT("DSMI Advanced Music Format (Compact) v{}")(fileSignature.version);
m_modFormat.type = UL_("dmf");
} else
{
m_songName = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, title);
m_modFormat.formatName = MPT_UFORMAT("DSMI Advanced Music Format v{}")(fileSignature.version);
m_modFormat.type = UL_("amf");
}
m_modFormat.charset = mpt::Charset::CP437;
m_nSamples = fileHeader.numSamples;
if(fileSignature.version < 9)
{
// Old format revisions are fixed to 4 channels
for(CHANNELINDEX chn = 0; chn < 4; chn++)
{
ChnSettings[chn].nPan = (chn & 1) ? 0xC0 : 0x40;
}
}
// Setup Channel Pan Positions
if(fileSignature.version >= 11)
{
const CHANNELINDEX readChannels = fileSignature.version >= 12 ? 32 : 16;
for(auto &chn : ChnSettings)
{
int8 pan = file.ReadInt8();
if(pan == 100)
chn.dwFlags = CHN_SURROUND;
else
chn.nPan = static_cast<uint16>(std::clamp((pan + 64) * 2, 0, 256));
}
file.Skip(readChannels - GetNumChannels());
} else if(fileSignature.version >= 9)
{
// Internally, DSMI assigns an Amiga-like LRRL panning scheme to the channels in pre-v11 files,
// but channels are stored in LRLR order (0 1 3 2 typically). The channel remap table that follows
// would normally undo this mapping, so that the panning is as expected again.
// This can be observed by looking at a 4-channel MOD and the converted AMF file: The last two channels are swapped.
// We ignore all this mess and simply assume that all AMF files use the standard remap table.
file.Skip(16);
for(CHANNELINDEX chn = 0; chn < GetNumChannels(); chn++)
{
ChnSettings[chn].nPan = (chn & 1) ? 0xC0 : 0x40;
}
}
// Get Tempo/Speed
if(fileSignature.version >= 13)
{
auto [tempo, speed] = file.ReadArray<uint8, 2>();
if(tempo < 32)
tempo = 125;
Order().SetDefaultTempoInt(tempo);
Order().SetDefaultSpeed(speed);
} else
{
Order().SetDefaultTempoInt(125);
Order().SetDefaultSpeed(6);
}
// Setup Order List
Order().resize(fileHeader.numOrders);
std::vector<uint16> patternLength;
const FileReader::pos_type trackStartPos = file.GetPosition() + (fileSignature.version >= 14 ? 2 : 0);
if(fileSignature.version >= 14)
{
patternLength.resize(fileHeader.numOrders);
}
for(ORDERINDEX ord = 0; ord < fileHeader.numOrders; ord++)
{
Order()[ord] = ord;
if(fileSignature.version >= 14)
{
patternLength[ord] = file.ReadUint16LE();
}
// Track positions will be read as needed.
file.Skip(GetNumChannels() * 2);
}
// Read Sample Headers
bool truncatedSampleHeaders = false;
if(fileSignature.version == 10)
{
// M2AMF 1.3 included with DMP 2.32 wrote new (v10+) sample headers, but using the old struct length.
const auto startPos = file.GetPosition();
for(SAMPLEINDEX smp = 1; smp <= GetNumSamples(); smp++)
{
AMFSampleHeaderNew sample;
if(file.ReadStruct(sample) && !sample.IsValid(fileHeader.numSamples))
{
truncatedSampleHeaders = true;
break;
}
}
file.Seek(startPos);
}
std::vector<uint32> sampleMap(GetNumSamples(), 0);
for(SAMPLEINDEX smp = 1; smp <= GetNumSamples(); smp++)
{
if(fileSignature.version < 10)
{
AMFSampleHeaderOld sample;
file.ReadStruct(sample);
sample.ConvertToMPT(Samples[smp]);
m_szNames[smp] = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, sample.name);
sampleMap[smp - 1] = sample.index;
} else if(isDMF)
{
AMFSampleHeaderCompact sample;
file.ReadStruct(sample);
sample.ConvertToMPT(Samples[smp]);
m_szNames[smp] = "";
sampleMap[smp - 1] = sample.index;
} else
{
AMFSampleHeaderNew sample;
file.ReadStructPartial(sample, truncatedSampleHeaders ? sizeof(AMFSampleHeaderOld) : sizeof(AMFSampleHeaderNew));
sample.ConvertToMPT(Samples[smp], truncatedSampleHeaders);
m_szNames[smp] = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, sample.name);
sampleMap[smp - 1] = sample.index;
}
}
// Read Track Mapping Table
std::vector<uint16le> trackMap;
if(!file.ReadVector(trackMap, fileHeader.numTracks))
{
return false;
}
uint16 trackCount = 0;
if(!trackMap.empty())
trackCount = *std::max_element(trackMap.cbegin(), trackMap.cend());
// Read pattern tracks
std::vector<FileReader> trackData(trackCount);
for(uint16 i = 0; i < trackCount; i++)
{
// Track size is a 16-Bit value describing the number of byte triplets in this track, followed by a track type byte.
uint16 numEvents = file.ReadUint16LE();
file.Skip(1);
if(numEvents)
trackData[i] = file.ReadChunk(numEvents * 3 + (fileSignature.version == 1 ? 3 : 0));
}
if(loadFlags & loadSampleData)
{
// Read Sample Data
const SampleIO sampleIO(
SampleIO::_8bit,
SampleIO::mono,
SampleIO::littleEndian,
isDMF ? SampleIO::deltaPCM : SampleIO::unsignedPCM);
// Note: in theory a sample can be reused by several instruments and appear in a different order in the file
// However, M2AMF doesn't take advantage of this and just writes instruments in the order they appear,
// without de-duplicating identical sample data.
for(SAMPLEINDEX smp = 1; smp <= GetNumSamples() && file.CanRead(1); smp++)
{
auto startPos = file.GetPosition();
for(SAMPLEINDEX target = 0; target < GetNumSamples(); target++)
{
if(sampleMap[target] != smp)
continue;
file.Seek(startPos);
ModSample &sample = Samples[target + 1];
sampleIO.ReadSample(sample, file);
if(isDMF)
{
// Unsigned delta samples, how novel!
for(auto &v : mpt::as_span(sample.sample8(), sample.nLength))
{
v = static_cast<int8>(static_cast<uint8>(v) ^ 0x80u);
}
}
}
}
}
if(!(loadFlags & loadPatternData))
{
return true;
}
// Create the patterns from the list of tracks
Patterns.ResizeArray(fileHeader.numOrders);
for(PATTERNINDEX pat = 0; pat < fileHeader.numOrders; pat++)
{
uint16 patLength = pat < patternLength.size() ? patternLength[pat] : 64;
if(!Patterns.Insert(pat, patLength))
{
continue;
}
// Get table with per-channel track assignments
file.Seek(trackStartPos + pat * (GetNumChannels() * 2 + (fileSignature.version >= 14 ? 2 : 0)));
std::vector<uint16le> tracks;
if(!file.ReadVector(tracks, GetNumChannels()))
{
continue;
}
for(CHANNELINDEX chn = 0; chn < GetNumChannels(); chn++)
{
if(tracks[chn] > 0 && tracks[chn] <= fileHeader.numTracks)
{
uint16 realTrack = trackMap[tracks[chn] - 1];
if(realTrack > 0 && realTrack <= trackCount)
{
realTrack--;
AMFReadPattern(Patterns[pat], chn, trackData[realTrack]);
}
}
}
}
return true;
}
OPENMPT_NAMESPACE_END