336 lines
9.5 KiB
C
336 lines
9.5 KiB
C
#include "resampler.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* Copyright (C) 2004-2008 Shay Green.
|
|
Copyright (C) 2015-2022 Christopher Snowhill. This module is free software; you
|
|
can redistribute it and/or modify it under the terms of the GNU Lesser
|
|
General Public License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version. This
|
|
module is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
|
|
details. You should have received a copy of the GNU Lesser General Public
|
|
License along with this module; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
#undef PI
|
|
#define PI 3.1415926535897932384626433832795029
|
|
|
|
enum { imp_scale = 0x7FFF };
|
|
typedef int16_t imp_t;
|
|
typedef int32_t imp_off_t; /* for max_res of 512 and impulse width of 32, end offsets must be 32 bits */
|
|
|
|
#if RESAMPLER_BITS == 16
|
|
typedef int32_t intermediate_t;
|
|
#elif RESAMPLER_BITS == 32
|
|
typedef int64_t intermediate_t;
|
|
#endif
|
|
|
|
static void gen_sinc(double rolloff, int width, double offset, double spacing, double scale,
|
|
int count, imp_t *out) {
|
|
double const maxh = 256;
|
|
double const step = PI / maxh * spacing;
|
|
double const to_w = maxh * 2 / width;
|
|
double const pow_a_n = pow(rolloff, maxh);
|
|
double angle = (count / 2 - 1 + offset) * -step;
|
|
scale /= maxh * 2;
|
|
|
|
while(count--) {
|
|
double w;
|
|
*out++ = 0;
|
|
w = angle * to_w;
|
|
if(fabs(w) < PI) {
|
|
double rolloff_cos_a = rolloff * cos(angle);
|
|
double num = 1 - rolloff_cos_a -
|
|
pow_a_n * cos(maxh * angle) +
|
|
pow_a_n * rolloff * cos((maxh - 1) * angle);
|
|
double den = 1 - rolloff_cos_a - rolloff_cos_a + rolloff * rolloff;
|
|
double sinc = scale * num / den - scale;
|
|
|
|
out[-1] = (imp_t)(cos(w) * sinc + sinc);
|
|
}
|
|
angle += step;
|
|
}
|
|
}
|
|
|
|
enum { width = 64 };
|
|
enum { stereo = 2 };
|
|
enum { max_res = 512 };
|
|
enum { min_width = (width < 4 ? 4 : width) };
|
|
enum { adj_width = min_width / 4 * 4 + 2 };
|
|
enum { write_offset = adj_width * stereo };
|
|
|
|
enum { buffer_size = 128 };
|
|
|
|
typedef struct _resampler {
|
|
int width_;
|
|
int rate_;
|
|
int inptr;
|
|
int infilled;
|
|
int outptr;
|
|
int outfilled;
|
|
|
|
int latency;
|
|
|
|
imp_t const *imp;
|
|
imp_t impulses[max_res * (adj_width + 2 * (sizeof(imp_off_t) / sizeof(imp_t)))];
|
|
sample_t buffer_in[buffer_size * stereo * 2];
|
|
sample_t buffer_out[buffer_size * stereo];
|
|
} resampler;
|
|
|
|
void *resampler_create() {
|
|
resampler *r = (resampler *)malloc(sizeof(resampler));
|
|
if(r) resampler_clear(r);
|
|
return r;
|
|
}
|
|
|
|
void *resampler_dup(void *_r) {
|
|
resampler *r = (resampler *)_r;
|
|
resampler *t = (resampler *)malloc(sizeof(resampler));
|
|
if(r && t) {
|
|
memcpy(t, r, sizeof(resampler));
|
|
t->imp = t->impulses + (r->imp - r->impulses);
|
|
} else if(t) {
|
|
resampler_clear(t);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
void resampler_destroy(void *r) {
|
|
free(r);
|
|
}
|
|
|
|
void resampler_clear(void *_r) {
|
|
resampler *r = (resampler *)_r;
|
|
r->width_ = adj_width;
|
|
r->inptr = 0;
|
|
r->infilled = 0;
|
|
r->outptr = 0;
|
|
r->outfilled = 0;
|
|
r->latency = 0;
|
|
r->imp = r->impulses;
|
|
|
|
resampler_set_rate(r, 1.0);
|
|
}
|
|
|
|
void resampler_set_rate(void *_r, double new_factor) {
|
|
resampler *rs = (resampler *)_r;
|
|
|
|
double const rolloff = 0.999;
|
|
double const gain = 1.0;
|
|
|
|
int step;
|
|
double fraction;
|
|
|
|
double filter;
|
|
double pos = 0.0;
|
|
|
|
imp_t *out;
|
|
|
|
int n;
|
|
|
|
/* determine number of sub-phases that yield lowest error */
|
|
double ratio_ = 0.0;
|
|
int res = -1;
|
|
{
|
|
double least_error = 2;
|
|
double pos = 0;
|
|
int r;
|
|
for(r = 1; r <= max_res; r++) {
|
|
double nearest, error;
|
|
pos += new_factor;
|
|
nearest = floor(pos + 0.5);
|
|
error = fabs(pos - nearest);
|
|
if(error < least_error) {
|
|
res = r;
|
|
ratio_ = nearest / res;
|
|
least_error = error;
|
|
}
|
|
}
|
|
}
|
|
rs->rate_ = ratio_;
|
|
|
|
/* how much of input is used for each output sample */
|
|
step = stereo * (int)floor(ratio_);
|
|
fraction = fmod(ratio_, 1.0);
|
|
|
|
filter = (ratio_ < 1.0) ? 1.0 : 1.0 / ratio_;
|
|
/*int input_per_cycle = 0;*/
|
|
out = rs->impulses;
|
|
for(n = res; --n >= 0;) {
|
|
int cur_step;
|
|
|
|
gen_sinc(rolloff, (int)(rs->width_ * filter + 1) & ~1, pos, filter,
|
|
(double)(imp_scale * gain * filter), (int)rs->width_, out);
|
|
out += rs->width_;
|
|
|
|
cur_step = step;
|
|
pos += fraction;
|
|
if(pos >= 0.9999999) {
|
|
pos -= 1.0;
|
|
cur_step += stereo;
|
|
}
|
|
|
|
((imp_off_t *)out)[0] = (cur_step - rs->width_ * 2 + 4) * sizeof(sample_t);
|
|
((imp_off_t *)out)[1] = 2 * sizeof(imp_t) + 2 * sizeof(imp_off_t);
|
|
out += 2 * (sizeof(imp_off_t) / sizeof(imp_t));
|
|
/*input_per_cycle += cur_step;*/
|
|
}
|
|
/* last offset moves back to beginning of impulses*/
|
|
((imp_off_t *)out)[-1] -= (char *)out - (char *)rs->impulses;
|
|
|
|
rs->imp = rs->impulses;
|
|
}
|
|
|
|
int resampler_get_free(void *_r) {
|
|
resampler *r = (resampler *)_r;
|
|
return buffer_size * stereo - r->infilled;
|
|
}
|
|
|
|
int resampler_get_min_fill(void *_r) {
|
|
resampler *r = (resampler *)_r;
|
|
const int min_needed = write_offset + stereo;
|
|
const int latency = r->latency ? 0 : adj_width;
|
|
int min_free = min_needed - r->infilled - latency;
|
|
return min_free < 0 ? 0 : min_free;
|
|
}
|
|
|
|
void resampler_write_pair(void *_r, sample_t ls, sample_t rs) {
|
|
resampler *r = (resampler *)_r;
|
|
|
|
if(!r->latency) {
|
|
int i;
|
|
for(i = 0; i < adj_width / 2; ++i) {
|
|
r->buffer_in[r->inptr + 0] = 0;
|
|
r->buffer_in[r->inptr + 1] = 0;
|
|
r->buffer_in[buffer_size * stereo + r->inptr + 0] = 0;
|
|
r->buffer_in[buffer_size * stereo + r->inptr + 1] = 0;
|
|
r->inptr = (r->inptr + stereo) % (buffer_size * stereo);
|
|
r->infilled += stereo;
|
|
}
|
|
r->latency = 1;
|
|
}
|
|
|
|
if(r->infilled < buffer_size * stereo) {
|
|
r->buffer_in[r->inptr + 0] = ls;
|
|
r->buffer_in[r->inptr + 1] = rs;
|
|
r->buffer_in[buffer_size * stereo + r->inptr + 0] = ls;
|
|
r->buffer_in[buffer_size * stereo + r->inptr + 1] = rs;
|
|
r->inptr = (r->inptr + stereo) % (buffer_size * stereo);
|
|
r->infilled += stereo;
|
|
}
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#define restrict __restrict
|
|
#endif
|
|
|
|
static const sample_t *resampler_inner_loop(resampler *r, sample_t **out_,
|
|
sample_t const *out_end, sample_t const in[], int in_size) {
|
|
in_size -= write_offset;
|
|
if(in_size > 0) {
|
|
sample_t *restrict out = *out_;
|
|
sample_t const *const in_end = in + in_size;
|
|
imp_t const *imp = r->imp;
|
|
|
|
do {
|
|
/* accumulate in extended precision*/
|
|
int pt = imp[0];
|
|
int n;
|
|
intermediate_t l = (intermediate_t)pt * (intermediate_t)(in[0]);
|
|
intermediate_t r = (intermediate_t)pt * (intermediate_t)(in[1]);
|
|
if(out >= out_end)
|
|
break;
|
|
for(n = (adj_width - 2) / 2; n; --n) {
|
|
pt = imp[1];
|
|
l += (intermediate_t)pt * (intermediate_t)(in[2]);
|
|
r += (intermediate_t)pt * (intermediate_t)(in[3]);
|
|
|
|
/* pre-increment more efficient on some RISC processors*/
|
|
imp += 2;
|
|
pt = imp[0];
|
|
r += (intermediate_t)pt * (intermediate_t)(in[5]);
|
|
in += 4;
|
|
l += (intermediate_t)pt * (intermediate_t)(in[0]);
|
|
}
|
|
pt = imp[1];
|
|
l += (intermediate_t)pt * (intermediate_t)(in[2]);
|
|
r += (intermediate_t)pt * (intermediate_t)(in[3]);
|
|
|
|
/* these two "samples" after the end of the impulse give the
|
|
* proper offsets to the next input sample and next impulse */
|
|
in = (sample_t const *)((char const *)in + ((imp_off_t *)(&imp[2]))[0]); /* some negative value */
|
|
imp = (imp_t const *)((char const *)imp + ((imp_off_t *)(&imp[2]))[1]); /* small positive or large negative */
|
|
|
|
out[0] = (sample_t)(l >> 15);
|
|
out[1] = (sample_t)(r >> 15);
|
|
out += 2;
|
|
} while(in < in_end);
|
|
|
|
r->imp = imp;
|
|
*out_ = out;
|
|
}
|
|
return in;
|
|
}
|
|
|
|
#undef restrict
|
|
|
|
static int resampler_wrapper(resampler *r, sample_t out[], int *out_size,
|
|
sample_t const in[], int in_size) {
|
|
sample_t *out_ = out;
|
|
int result = resampler_inner_loop(r, &out_, out + *out_size, in, in_size) - in;
|
|
|
|
*out_size = out_ - out;
|
|
return result;
|
|
}
|
|
|
|
static void resampler_fill(resampler *r) {
|
|
while(!r->outfilled && r->infilled) {
|
|
int writepos = (r->outptr + r->outfilled) % (buffer_size * stereo);
|
|
int writesize = (buffer_size * stereo) - writepos;
|
|
int inread;
|
|
if(writesize > (buffer_size * stereo - r->outfilled))
|
|
writesize = buffer_size * stereo - r->outfilled;
|
|
inread = resampler_wrapper(r, &r->buffer_out[writepos], &writesize, &r->buffer_in[buffer_size * stereo + r->inptr - r->infilled], r->infilled);
|
|
r->infilled -= inread;
|
|
r->outfilled += writesize;
|
|
if(!inread)
|
|
break;
|
|
}
|
|
}
|
|
|
|
int resampler_get_avail(void *_r) {
|
|
resampler *r = (resampler *)_r;
|
|
if(r->outfilled < stereo && r->infilled >= r->width_)
|
|
resampler_fill(r);
|
|
return r->outfilled;
|
|
}
|
|
|
|
static void resampler_read_pair_internal(resampler *r, sample_t *ls, sample_t *rs, int advance) {
|
|
if(r->outfilled < stereo)
|
|
resampler_fill(r);
|
|
if(r->outfilled < stereo) {
|
|
*ls = 0;
|
|
*rs = 0;
|
|
return;
|
|
}
|
|
*ls = r->buffer_out[r->outptr + 0];
|
|
*rs = r->buffer_out[r->outptr + 1];
|
|
if(advance) {
|
|
r->outptr = (r->outptr + 2) % (buffer_size * stereo);
|
|
r->outfilled -= stereo;
|
|
}
|
|
}
|
|
|
|
void resampler_read_pair(void *_r, sample_t *ls, sample_t *rs) {
|
|
resampler *r = (resampler *)_r;
|
|
resampler_read_pair_internal(r, ls, rs, 1);
|
|
}
|
|
|
|
void resampler_peek_pair(void *_r, sample_t *ls, sample_t *rs) {
|
|
resampler *r = (resampler *)_r;
|
|
resampler_read_pair_internal(r, ls, rs, 0);
|
|
}
|